Geniuses wanted

Cousin Leonidas. He wasn’t always this angry.

Growing up in Spata (no, not Sparta – but feel free to ignore this remark) there was not much to do in the evenings. After school was done and volleyball practice was over (with my two brothers we made up half of the school team) my dad would come pick us up for a fun three hours of track and field practice. Just another lazy evening. Who am I kidding… It was exhausting! But, throwing a javelin with exuberant fury was also therapeutic (it’s a Greek thing). Yet, here lied the problem: The adrenaline high from a good five hours of sports every day would not dissipate simply because of physical exhaustion. I don’t know about my brothers, but my brain was on fire and the two pounds of pasta my mom would put on my plate (almost) every night, could not induce a strong enough food coma. Even working on the next day’s homework did not do the trick of putting me to sleep (though it did help significantly). By then, it was past midnight and I was wide awake.
Continue reading

Apollo

Neil Armstrong (1930-2012)

I was an eight-year-old second grader on April 12, 1961, when my father showed me a screaming headline with two-inch-high lettering in the afternoon newspaper: RUSSIAN 1ST SPACEMAN. Sensing a historic moment, I saved the front page and pasted it into a scrapbook. That was the first of many headlines I saved through the years of the “space race.”
Continue reading

How I fell in love with teaching and most recently with LIGO

My mom retired as a Principal of High school. I was really inspired by her command over the whole school and involvement with the School Board. I was so inspired and motivated by her achievements in teaching that I always wanted to be a teacher. I had a special interest in science and was very close with my science teachers. I used to participate in science fairs and even won a few prizes along the way.
Continue reading

How to build a teleportation machine: Intro to entanglement

Oh my, I ate the whole thing again. Are physicists eligible for Ben and Jerry’s sponsorships?

I’m not sure what covers more ground when I go for a long run — my physical body or my metaphorical mind? Chew on that one, zen scholar! Anyways, I basically wrote the following post during my most recent run, and I also worked up an agressive appetite for Ben and Jerry’s ice cream. I’m going to reward myself after writing this post by devouring a pint of “half-baked” brown-kie ice cream (you can’t find this stuff in your local store.)

The goal of this series of blog posts is to explain quantum teleportation and how Caltech built a machine to do this. The tricky aspect is that there are two foundational elements of quantum information that need to be explained first — they’re both phenomenally interesting in their own right, but substantially subtler than a teleportation device, so the goal with this series is to explain qubits and entanglement at a level which will allow you to appreciate what our teleportation machine does (and after explaining quantum teleportation, hopefully some of you will be motivated to dive deeper into the subtleties of quantum information.) This post will explain entanglement.
Continue reading

The Eiger et al.

When I was a graduate student, on my second year I was put in an office that was shared with two postdocs – Arne Brataas and Stefan Kehrein. It made me really feel like I was being initiated into this community of theoretical physicists – something I had been dreaming of since I was a teenager. The most conspicuous thing in the office (Harvard’s Lyman 332 if I recall correctly), was a big three or four panel poster of an astounding mountain range, craggy peaks, glaciers, steep drops. There was a small note on the corner: “The Eiger et al. – the amazing history of this poster is recounted in the book ‘Who Got Polchinski’s Office’ ”*
Continue reading

How to build a teleportation machine: Intro to qubits

A match made in heaven.

If a tree falls in a forest, and nobody is there to hear it, does it make a sound? The answer was obvious to my 12-year-old self — of course it made a sound. More specifically, something ranging from a thud to a thump. There doesn’t need to be an animal present for the tree to jiggle air molecules. Classical physics for the win! Around the same time I was exposed to this thought experiment, I read Michael Crichton’s Timeline. The premise is simple, but not necessarily feasible: archeologists use ‘quantum technology’ (many-worlds interpretation and quantum teleportation) to travel to the Dordogne region of France in the mid 1300s. Blood, guts, action, drama, and plot twists ensue. I haven’t returned to this book since I was thirteen, so I’m guaranteed to have the plot wrong, but for better or worse, I credit this book with planting the seeds of a misconception about what ‘quantum teleportation’ actually entails. This is the first of a multi-part post which will introduce readers to the one-and-only way we know of how teleportation works.
Continue reading

Universal thread

How many miles per gallon?

Thoughts while watching the Olympics …

My car gets about 30 miles per gallon of gasoline. Miles per gallon has the dimensions of inverse length squared, and the reciprocal of 30 miles per gallon is roughly the area of a circle whose diameter is 0.3 mm, or about 1/100 of an inch.

That means that when I drive my car, the fuel I consume has the same volume as a thin thread stretched along the road over the distance I travel, with a thickness just a few times the width of a human hair.*

That skinny little thread of gasoline is enough to keep my car going! Thinking about it reinforces one’s appreciation for the internal combustion engine.
Continue reading

Much more than Lasers and Mirrors

I have been teaching Chemistry, Physics and Earth Science for twenty five years now, the last fourteen at Duarte High School. I have always emphasized laboratories, focusing on the scientific process and have a philosophy of imparting translatable skills along the way. This summer I had the honor of being selected to join the IQIM Summer Research Institute and as part of that program I worked with Rana Adikhari’s research group, seeking to reduce sources of noise (enhance signal quality) for the Laser Interferometer Gravitational Wave Observatory (LIGO) project. Why? To better detect signals which indicate warps in spacetime!

I love being outdoors, even when I commute to Caltech.


Continue reading

Two-trick pony

Steve Flammia wrote a flattering post on The Quantum Pontiff about a game we used to play, in which Steve would ask a question and I would have just a minute or two to prepare a 20 minute mini-lecture answering the question. Steve reports that “these were not easy questions.” But actually most of them were.

Steve gives an example: “Why do neutrinos have a small but nonzero mass?”
Continue reading