A quantum walk down memory lane

In elementary and middle school, I felt an affinity for the class three years above mine. Five of my peers had siblings in that year. I carpooled with a student in that class, which partnered with mine in holiday activities and Grandparents’ Day revues. Two students in that class stood out. They won academic-achievement awards, represented our school in science fairs and speech competitions, and enrolled in rigorous high-school programs.

Those students came to mind as I grew to know David Limmer. David is an assistant professor of chemistry at the University of California, Berkeley. He studies statistical mechanics far from equilibrium, using information theory. Though a theorist ardent about mathematics, he partners with experimentalists. He can pass as a physicist and keeps an eye on topics as far afield as black holes. According to his faculty page, I discovered while writing this article, he’s even three years older than I. 

I met David in the final year of my PhD. I was looking ahead to postdocking, as his postdoc fellowship was fading into memory. The more we talked, the more I thought, I’d like to be like him.

Playground

I had the good fortune to collaborate with David on a paper published by Physical Review A this spring (as an Editors’ Suggestion!). The project has featured in Quantum Frontiers as the inspiration for a rewriting of “I’m a little teapot.” 

We studied a molecule prevalent across nature and technologies. Such molecules feature in your eyes, solar-fuel-storage devices, and more. The molecule has two clumps of atoms. One clump may rotate relative to the other if the molecule absorbs light. The rotation switches the molecule from a “closed” configuration to an “open” configuration.

Molecular switch

These molecular switches are small, quantum, and far from equilibrium; so modeling them is difficult. Making assumptions offers traction, but many of the assumptions disagreed with David. He wanted general, thermodynamic-style bounds on the probability that one of these molecular switches would switch. Then, he ran into me.

I traffic in mathematical models, developed in quantum information theory, called resource theories. We use resource theories to calculate which states can transform into which in thermodynamics, as a dime can transform into ten pennies at a bank. David and I modeled his molecule in a resource theory, then bounded the molecule’s probability of switching from “closed” to “open.” I accidentally composed a theme song for the molecule; you can sing along with this post.

That post didn’t mention what David and I discovered about quantum clocks. But what better backdrop for a mental trip to elementary school or to three years into the future?

I’ve blogged about autonomous quantum clocks (and ancient Assyria) before. Autonomous quantum clocks differ from quantum clocks of another type—the most precise clocks in the world. Scientists operate the latter clocks with lasers; autonomous quantum clocks need no operators. Autonomy benefits you if you want for a machine, such as a computer or a drone, to operate independently. An autonomous clock in the machine ensures that, say, the computer applies the right logical gate at the right time.

What’s an autonomous quantum clock? First, what’s a clock? A clock has a degree of freedom (e.g., a pair of hands) that represents the time and that moves steadily. When the clock’s hands point to 12 PM, you’re preparing lunch; when the clock’s hands point to 6 PM, you’re reading Quantum Frontiers. An autonomous quantum clock has a degree of freedom that represents the time fairly accurately and moves fairly steadily. (The quantum uncertainty principle prevents a perfect quantum clock from existing.)

Suppose that the autonomous quantum clock constitutes one part of a machine, such as a quantum computer, that the clock guides. When the clock is in one quantum state, the rest of the machine undergoes one operation, such as one quantum logical gate. (Experts: The rest of the machine evolves under one Hamiltonian.) When the clock is in another state, the rest of the machine undergoes another operation (evolves under another Hamiltonian).

Clock 2

Physicists have been modeling quantum clocks using the resource theory with which David and I modeled our molecule. The math with which we represented our molecule, I realized, coincided with the math that represents an autonomous quantum clock.

Think of the molecular switch as a machine that operates (mostly) independently and that contains an autonomous quantum clock. The rotating clump of atoms constitutes the clock hand. As a hand rotates down a clock face, so do the nuclei rotate downward. The hand effectively points to 12 PM when the switch occupies its “closed” position. The hand effectively points to 6 PM when the switch occupies its “open” position.

The nuclei account for most of the molecule’s weight; electrons account for little. They flit about the landscape shaped by the atomic clumps’ positions. The landscape governs the electrons’ behavior. So the electrons form the rest of the quantum machine controlled by the nuclear clock.

Clock 1

Experimentalists can create and manipulate these molecular switches easily. For instance, experimentalists can set the atomic clump moving—can “wind up” the clock—with ultrafast lasers. In contrast, the only other autonomous quantum clocks that I’d read about live in theory land. Can these molecules bridge theory to experiment? Reach out if you have ideas!

And check out David’s theory lab on Berkeley’s website and on Twitter. We all need older siblings to look up to.

What can you do in 48 hours?

Have you ever wondered what can be done in 48 hours? For instance, our heart beats around 200 000 times. One of the biggest supercomputers crunches petabytes (peta = 1015) of numbers to simulate an experiment that took Google’s quantum processor only 300 seconds to run. In 48 hours, one can also participate in the Sciathon with almost 500 young researchers from more than 80 countries! 

Two weeks ago I participated in a scientific marathon, the Sciathon. The structure of this event roughly resembled a hackathon. I am sure many readers are familiar with the idea of a hackathon from personal experience. For those unfamiliar — a hackathon is an intense collaborative event, usually organized over the weekend, during which people with different backgrounds work in groups to create prototypes of functioning software or hardware. For me, it was the very first time to have firsthand experience with a hackathon-like event!

The Sciathon was organized by the Lindau Nobel Laureate Meetings (more about the meetings with Nobel laureates, which happen annually in the lovely German town of Lindau, in another blogpost, I promise!) This year, unfortunately, the face-to-face meeting in Lindau was postponed until the summer of 2021. Instead, the Lindau Nobel Laureate Meetings alumni and this year’s would-be attendees had an opportunity to gather for the Sciathon, as well as the Online Science Days earlier this week, during which the best Sciathon projects were presented.

The participants of the Sciathon could choose to contribute new views, perspectives and solutions to three main topics: Lindau Guidelines, Communicating Climate Change and Capitalism After Corona. The first topic concerned an open, cooperative science community where data and knowledge are freely shared, the second — how scientists could show that the climate crisis is just as big a threat as the SARS-CoV-19 virus, and the last — how to remodel our current economic systems so that they are more robust to unexpected sudden crises. More detailed descriptions of each topic can be found on the official Sciathon webpage.

My group of ten eager scientists, mostly physicists, from master students to postdoctoral researchers, focused on the first topic. In particular, our goal was to develop a method of familiarizing high school students with the basics of quantum information and computation. We envisioned creating an online notebook, where an engaging story would be intertwined with interactive blocks of Python code utilizing the open-source quantum computing toolkit Qiskit. This hands-on approach would enable students to play with quantum systems described in the story-line by simply running the pre-programmed commands with a click of the mouse and then observe how “experiment” matches “the theory”. We decided to work with a system comprising one or two qubits and explain such fundamental concepts in quantum physics as superposition, entanglement and measurement. The last missing part was a captivating story.

The story we came up with involved two good friends from the lab, Miss Schrödinger and Miss Pauli, as well as their kittens, Alice and Bob. At first, Alice and Bob seemed to be ordinary cats, however whenever they sipped quantum milk, they would turn into quantum cats, or as quantum physicists would say — kets. Do I have to remind the reader that a quantum cat, unlike an ordinary one, could be both awake and asleep at the same time?

Miss Schrödinger was a proud cat owner who not only loved her cat, but also would take hundreds of pictures of Alice and eagerly upload them on social media. Much to Miss Schrödinger’s surprise, none of the pictures showed Alice partly awake and partly asleep — the ket would always collapse to the cat awake or the cat asleep! Every now and then, Miss Pauli would come to visit Miss Schrödinger and bring her own cat Bob. While the good friends were chit-chatting over a cup of afternoon tea, the cats sipped a bit of quantum milk and started to play with a ball of wool, resulting in a cute mess of two kittens tangled up in wool. Every time after coming back home, Miss Pauli would take a picture of Bob and share it with Miss Schrödinger, who would obviously also take a picture of Alice. After a while, the young scientists started to notice some strange correlations between the states of their cats… 

The adventures of Miss Schrödinger and her cat continue! For those interested, you can watch a short video about our project! 

Overall, I can say that I had a lot of fun participating in the Sciathon. It was an intense yet extremely gratifying event. In addition to the obvious difficulty of racing against the clock, our group also had to struggle with coordinating video calls between group members scattered across three almost equidistant time zones — Eastern Australian, Central European and Central US! During the Sciathon I had a chance to interact with other science enthusiasts from different backgrounds and work on something from outside my area of expertise. I would strongly encourage anyone to participate in hackathon-like events to break the daily routine, particularly monotonous during the lockdown, and unleash one’s creative spirit. Such events can also be viewed as an opportunity to communicate science and scientific progress to the public. Lastly, I would like to thank other members of my team — collaborating with you during the Sciathon was a blast!

During the Sciathon, we had many brainstorming sessions. You can see most of the members of my group in this video call (from left to right, top to bottom): Shuang, myself, Martin, Kyle, Hadewijch, Saskia, Michael and Bartłomiej. The team also included Ahmed and Watcharaphol.