Macroscopic quantum teleportation: the story of my chair

In the summer of 2000, a miracle occurred: The National Science Foundation decided to fund a new Institute for Quantum Information at Caltech with a 5 million dollar award from their Information Technology Research program. I was to be the founding director of the IQI.

Jeff Kimble explained to me why we should propose establishing the IQI. He knew I had used my slice of our shared DARPA grant to bring Alexei Kitaev to Caltech as a visiting professor, which had been wonderful. Recalling how much we had both benefited from Kitaev’s visit, Jeff remarked emphatically that “This stuff’s not free.” He had a point. To have more fun we’d need more money. Jeff took the lead in recruiting a large team of Caltech theorists and experimentalists to join the proposal we submitted, but the NSF was primarily interested in supporting the theory of quantum computation rather than the experimental part of the proposal. That was how I wound up in charge, though I continued to rely on Jeff’s advice and support.

This was a new experience for me and I worried a lot about how directing an institute would change my life. But I had one worry above all: space. We envisioned a thriving institute brimming over with talented and enthusiastic young scientists and visitors drawn from the physics, computer science, and engineering communities. But how could we carve out a place on the Caltech campus where they could work and interact?

To my surprise and delight, Jeff and I soon discovered that someone else at Caltech shared our excitement over the potential of IQI — Richard Murray, who was then the Chair of Caltech’s Division of Engineering and Applied Science. Richard arranged for the IQI to occupy office space in Steele Laboratory and some space we could configure as we pleased in Jorgensen Laboratory. The hub of the IQI became the lounge in Jorgensen, which we used for our seminar receptions, group meetings, and innumerable informal discussions, until our move to the beautiful Annenberg Center when it opened in 2009.

I sketched a rough plan for the Jorgensen layout, including furniture for the lounge. The furniture, I was told, was “NIC”. Though I was too embarrassed to ask, I eventually inferred this meant “Not in Contract” — I would need to go furniture shopping, one of my many burgeoning responsibilities as Director.

By this time, Ann Harvey was in place as IQI administrator, a huge relief. But furniture was something I thought I knew about, because I had designed and furnished a common area for the particle theory group a couple of years earlier. As we had done on that previous occasion, my wife Roberta and I went to Krause’s Sofa Factory to order a custom-made couch, love seat, and lounge chair, in a grayish green leather which we thought would blend well with the carpeting.

Directing an institute is not as simple as it sounds, though. Before the furniture was delivered, Krause’s declared bankruptcy! We had paid in full, but I had some anxious moments wondering whether there would be a place to sit down in the IQI lounge. In the end, after some delay, our furniture was delivered in time for the grand opening of the new space in September 2001. A happy ending, but not really the end of the story.

Before the move to Annenberg in 2009, I ordered furniture to fill our (much smaller) studio space, which became the new IQI common area. The Jorgensen furniture was retired, and everything was new! It was nice … But every once in a while I felt a twinge of sadness. I missed my old leather chair, from which I had pontificated at eight years worth of group meetings. That chair and I had been through a lot together, and I couldn’t help but feel that my chair’s career had been cut short before its time.

I don’t recall mentioning these feelings to anyone, but someone must have sensed my regrets. Because one day not long after the move another miracle occurred … my chair was baaack! Sitting in it again felt … good. For five years now I’ve been pontificating from my old chair in our new studio, just like I used to. No one told me how my chair had been returned to me, and I knew better than to ask.

My chair today. Like me, a bit worn but still far from retirement.

My chair today. Like me, a bit worn but still far from retirement.

Eventually the truth comes out. At my 60th birthday celebration last year, Stephanie Wehner and Darrick Chang admitted to being the perpetrators, and revealed the whole amazing story in their article on “Macroscopic Quantum Teleportation” in a special issue of Nature Relocations. Their breakthrough article was enhanced by Stephanie’s extraordinary artwork, which you really have to see to believe. So if your curiosity is piqued, please follow this link to find out more.

Me and my chair at our original location in 156 Jorgensen (2009 photo).

Me and my chair at our original location in 156 Jorgensen (2009 photo).

Why, you may wonder, am I reminiscing today about the story of my chair? Well, is an excuse really necessary? But if you must know, it may be because, after two renewals and 14 years of operation, I submitted the IQI Final Report to the NSF this week. Don’t worry — the Report is not really Final, because the IQI has become part of an even grander vision, the IQIM (which has given birth to this blog among other good things). Like my chair, the IQI is not quite what it was, yet it lives on.

The nostalgic feelings aroused by filing the Final Report led me to reread the wonderful volume my colleagues put together for my birthday celebration, which recounts not only the unforgettable exploits of Stephanie and Darrick, but many other stories and testimonials that deeply touched me.

Browsing through that book today, one thing that struck me is the ways we sometimes have impact on others without even being aware of it. For example, Aram Harrow, Debbie Leung, Joe Renes and Stephanie all remember lectures I gave when they were undergraduate students (before I knew them), which might have influenced their later research careers. Knowing this will make it a little harder to say no the next time I’m invited to give a talk. Yaoyun Shi has vivid memories of the time I wore my gorilla mask to the IQI seminar on Halloween, which inspired him to dress up as “a butcher threatening to cut off the ears of my students with a bloody machete if they were not listening,” thus boosting his teaching evaluations. And Alexios Polychronakos, upon hearing that I had left particle theory to pursue quantum computing, felt it “was a bit like watching your father move to Las Vegas and marry a young dancer after you leave for college,” while at the same time he appreciated “that such reinventions are within the spectrum of possibilities for physicists who still have a pulse.”

I’m proud of what the IQI(M) has accomplished, but we’re just getting started. After 14 years, I still have a pulse, and my chair has plenty of wear left. Together we look forward to many more years of pontification.

Caltech InnoWorks 2014, More Than Just a Summer Camp

“More, we need more!”

Adding more fuel to “Red October”, I presented the final product to my teammates. With a communal nod of approval, we rushed over to the crowd.

“1, 2, 3, GO!”

It was the semi-finals. Teams Heil Hydra! and The Archimedean Hawks ignited their engines and set their vehicles onto the starting line. Nascar? F1? Nope, even better. Homemade steamboat races! Throughout the cheers and yelling, we discovered that more isn’t better. Flames were devouring Team Heil Hydra!’s Red October. Down went the ship. Despite the loss, the kids learned about steam as a source of energy, experimentation, and teamwork. Although it may have been hard to tell the first day, by the end of this fourth day of the camp, all students were visibly excited for another day of the InnoWorks summer program at Caltech.

photo (1)

What is InnoWorks? An engaging summer program aimed for middle school students with disadvantaged backgrounds, InnoWorks offers a free of charge opportunity to dig into the worlds of science, technology, engineering, mathematics, and medicine (STEM^2). In his own life experience, William Hwang (founder of InnoWorks) was blessed with the opportunities to attend several summer camps throughout his childhood, but he had a friend who did not share the same opportunities. Sparked with the desire to start something, Hwang founded the non-profit organization, United InnoWorks Academy. With the first program to begin in 2004, the InnoWorks Academy developed these summer programs to help provide underprivileged kids with hands-on activities, team-building activities, and fast-paced competitive missions. Starting with just 34 students and 17 volunteers in a single chapter, InnoWorks has now grown to more than a dozen university chapters that have hosted above 60 summer programs for 2,200 middle school students, all done with the help of over 1000 volunteers.

Monday, August 11th, 2014 marked the first day of Caltech’s 3rd annual summer InnoWorks program. Last year, my younger brother participated in the program and had such a great experience that he wanted to become a junior mentor this year. After researching the program and listening to my brother’s past experiences, I was ecstatic to accept this journey as a mentor for Caltech’s InnoWorks program. Allow me to take you on a ride through my team’s and my own experience of InnoWorks.

First Day of Caltech InnoWorks 2014. My first team member that I checked in was Elliot. “Are you ready for InnoWorks!?” Perhaps I was a little overly excited. I received a shrug and “What’re we eating for breakfast?” Not the response I was hoping for, but that was going to change. As the rest of my team, which included Frank, Megan, Ethan, and my junior mentor, Elan, arrived, I began peppering them with icebreakers left and right. Soon enough, we dubbed ourselves Heil Hydra! and by the end of the second day, I couldn’t get them to be quiet.

“What are we doing next?”

“Guys, GUYS! Let’s use the green pom-poms as chloroplasts.”

“Hey, the soap actually smells good.”

“Hm. If you add another rubber band, the cup won’t vibrate as much, and it makes a lower sound.”

Sometimes they would have endless questions, which was great! Isn’t that what science is all about?

InnoWorks-35

Most of the days during camp were themed with a specific subject, including biology, chemistry, physics, and engineering. Before each activity, both mentors and junior mentors gave a brief, prepared introduction to the science used during the experimentation. Here’s a quick synopsis of some of the activities and the students’ experiences:

Camera Obscura. After a short explanation of light, and how a lens works, we split the room up into 3 groups to build their very own camera obscura, which is an optical device that projects an image of its surroundings onto a screen (or in our case, the ground). Using a mirror, a magnifying glass, some PVC piping, and a black tarp, the kids constructed a camera obscura. I was impressed by how many students encumbered the heat of the black tarp and concrete all in the name of science.

Build Your Own Instrument. The title says all. I let my junior mentor, Elan, lead the group in this activity. Tasked with creating an instrument based on accurate pitch of 3 whole note tones, creativity, efficiency, and performance, the students went straight to work. Children have endless imaginations. Give kids PVC pipes, rubber bands, balloons, cups, and paper clips, and they’ll make everything! Working together, the groups created an instrument (often more than one) to present in front of everyone. Teams were required to explain how their instrument created sound (vibrations), and attempt to play “Mary Had a Little Lamb” (which most succeeded). I came across paperclip rain sticks, PVC didgeridoos, test tube pan flutes, red solo cup drums, and even PVC balloon catapults and rubber band ballistas!

photo

Liquid Nitrogen. One of the highlights of the camp was liquid nitrogen! We were very honored to have Glen Evenbly and Olivier Landon-Cardinal, IQIM postdocs, join us. After pouring the liquid into a bowl, Glen showed the kids how nitrogen gas enveloped the area. Liquid nitrogen’s efficiency as a coolant is limited by the fact that it boils immediately upon contact with a warmer object, surrounding the object with nitrogen gas on which the liquid surfs. This effect is known as the Leidenfrost effect, which applies to any liquid in contact with an object significantly hotter than its boiling point. 

InnoWorks-38InnoWorks-40 

However, liquid nitrogen is still extremely cold, and when roses were placed into the bowl with liquid nitrogen, the pedals froze right before everyone’s eyes.

Lego Mindstorms. The last activity of the camp was building a lego robot and programming it to track and follow a black tape trail using its light sensor. Since each of my team members had experience with these lego kits, they went to work right away. Two of my students worked on building the robot, while the other two retrieved the pieces. After awhile, they prompted each other to switch roles.

InnoWorks-3

Programming the robot was a struggle, but manipulating the code and watching the aftermath was all part of the experiment. After many attempted tries, the group was unable to accurately get the robot to follow the black line (some groups were successful!). However, without any outside help (including myself), Team Heil Hydra! programmed the robot to move and sing (can you guess?) “Mary Had a Little Lamb”. Teamwork for the win! Team spirit bloomed in my group – each day of camp my InnoWorkers agreed on a matching t-shirt color. As a mentor, I could not have been more proud.

InnoWorks-49

I know that I am not only speaking for myself when I say that the InnoWorks family, the students, and the program itself has burrowed its way into my heart. I have watched these students develop teamwork skills, enthusiasm for learning new things, and friendships. I have heard these students speak the minimal amount on their first day, only to find that their chatterboxes won’t stop the last day. To overlook InnoWorks as just a science camp where students come to learn about science is an understatement. InnoWorks is where students experience, engage, and conduct science, where they learn not just about science, but also about collaboration, leadership, and innovation. 

I must end on this last note: Heil Hydra! 

Editor’s Note: Ms. Rebekah Zhou is majoring in mathematics at CSU Fresno. In her spare time, she enjoys teaching piano and tutoring.

How Physics for Poets can boost your Physics GRE score

As summer fades to autumn, prospective grad students are eyeing applications. Professors are suggesting courses, and seniors are preparing for Graduate Record Exams (GREs). American physics programs  (and a few programs abroad) require or encourage applicants to take the Physics GRE. If you’ve sighted physics grad school in your crosshairs, consider adding Physics for Poets (PFP) to your course list. Many colleges develop this light-on-the-math tour of physics history for non-majors. But Physics for Poets can boost your Physics GRE score while reinforcing the knowledge gained from your physics major.

My senior spring in college, PFP manifested as “PHYS 001/002: Understanding the Universe: From Atoms to the Big Bang.” The tallness of this order failed to daunt Marcelo Gleiser, a cosmologist whose lectures swayed with a rhythm like a Foucault pendulum. From creation myths and Greek philosophers, we proceeded via Copernicus and Kepler to Newton and the Enlightenment, Maxwell and electromagnetism, the Industrial Revolution and thermodynamics, Einstein’s relativity, and WWII and the first quantum revolution, ending with particle physics and cosmology. The course provided a history credit I needed. It offered a breather from problem sets, sandwiching my biophysics and quantum-computation lectures. Pragmatism aside, PHYS 2 showcased the grandness of the physicist’s legacy—of my legacy. PHYS 2 sharpened my determination to do that legacy justice. To do it justice, most of us must pass tests. Here’s how PFP can help.

http://ask.dartmouth.edu/categories/misc/55.html

(1) A Foucault pendulum, invented during the 19th century to demonstrate that the Earth rotates. (2) An excuse to review noninertial reference frames.

Reviewing basic physics can improve GRE scores. If thermodynamics has faded from memory, good luck calculating a Carnot engine’s efficiency. Several guides (and I) recommend reviewing notes and textbooks, working practice problems, simulating exams, and discussing material with peers.

Taking PFP, you will review for the GRE. A list of the topics on the Physics GRE appears here. Of the 14 mechanics topics, eight surfaced in PHYS 2. Taking PFP will force you to review GRE topics that lack of time (or that procrastination) might force you to skip. Earning credit for GRE prep, you won’t have to shoehorn that prep into your schedule at the expense of research. The Physics GRE covers basic physics developed during the past 500 years; so do many PFP courses.

The GRE, you might protest, involves more math than PFP. But GRE questions probe less deeply, and PFP can galvanize more reviews of math, than you might expect. According to Stanford’s Society of Physics Students, “Each [Physics GRE] question shouldn’t require much more than a minute’s worth of thought and computation.” Expect to use the Wave Equation and Maxwell’s Equations, not to derive the former from the latter. Some PFP instructors require students to memorize formulae needed on the GRE. PFP can verify whether your memory has interchanged the exponents in Kepler’s Third Law, or dropped the negative sign from the kinetic-energy term in Schrödinger’s Equation.

Even formulae excluded from PFP exams appear in PFP classes. In a PHYS 2 Powerpoint, Marcelo included Planck’s blackbody formula. Though he never asked me to regurgitate it, his review benefited me. Given such a Powerpoint, you can re-memorize the formula. Derive the Stefan-Boltzmann and Wien Displacement Laws. Do you remember how a blackbody’s energy density varies with frequency in the low-energy limit? PFP can catalyze your review of math used on the GRE.

xkcd - Science

Physics for Poets: It can work for applicants to physics grad programs.

While recapitulating basic physics, PFP can introduce “specialized” GRE topics. Examples include particle physics, astrophysics, and nuclear physics. Covered in advanced classes, these subjects might have evaded mention in your courses. Signing up for biophysics, I had to drop particle theory. PHYS 2 helped compensate for the drop. I learned enough about neutrinos and quarks to answer GRE questions about them. In addition to improving your score, surveying advanced topics in PFP can enhance your understanding of physics seminars and conversations. The tour can help you identify which research you should undertake. If you’ve tried condensed-matter and atmospheric research without finding your niche, tasting cosmology in PFP might point toward your next project. Sampling advanced topics in PFP, you can not only prepare for the GRE, but also enrich your research.

I am not encouraging you to replace advanced physics courses with PFP. I encourage you to complement advanced courses with PFP. If particle physics suits your schedule and intrigues you, enjoy. If you need to fulfill a history or social-sciences distribution requirement, check whether PFP can count. Consider PFP if you’ve committed to a thesis and three problem-set courses, you haven’t signed up for the minimum number of courses required by your college, and more problem sets would strangle you. Sleep deprivation improves neither exam scores nor understanding. Not that I sailed through PHYS 2 without working. I worked my rear off—fortunately for my science. Switching mindsets—pausing frustrating calculations to study Kepler—can refresh us. Stretch your calculational toolkit in advanced courses, and reinforce that toolkit with PFP.

In addition to reviewing basic physics and surveying specialized topics, you can seek study help from experts in PFP. When your questions about GRE topics overlap with PFP material, ask your instructor and TA. They’ll probably enjoy answering: Imagine teaching physics with little math, with one hand tied behind your back. Some students take your class not because they want to, but because they need science credits. Wouldn’t you enjoy directing a student who cares? While seeking answers, you can get to know your professor or TA. You can learn about his or her research. Maybe PFP will lead you to join that research. PFP not only may connect you to experts able to answer questions as no study guide can. PFP offers opportunities to enhance a course as few non-physics students can and to develop relationships with role models.

Science class

Instructors’ expertise has benefited science students throughout much of history.

Those relationships illustrate the benefits that PFP extends beyond GREs. As mentioned earlier, surveying advanced topics can diversify the research conversations you understand. The survey can direct you toward research you’ll pursue. Further exposure to research can follow from discussions with instructors. Intermissions from problem sets can promote efficiency. Other benefits of PFP include enhancement of explanatory skills and a bird’s-eye view of the scientific process to which you’re pledging several years. What a privilege we enjoy, PFP shows. We physicists explore questions asked for millennia. We wear mantles donned by Faraday, Bernoulli, and Pauli. When integrals pour out our ears and experiments break down, PFP can remind us why we bother. And that we’re in fine company.

Physics for Poets can improve your Physics GRE score and reinforce your physics major. Surveying basic physics, PFP will force you to review GRE topics. PFP may introduce specialized GRE topics absent from most physics majors. Opportunities abound to re-memorize equations and to complement lectures with math. Questioning instructors, you can deepen your understanding as with no study guide. Beyond boosting your GRE score, PFP can broaden your research repertoire, energize your calculations, improve your explanatory skills, and inspire.

Good luck with the academic year, and see you in grad school!

The singularity is not near: the human brain as a Boson sampler?

Ever since the movie Transcendence came out, it seems like the idea of the ‘technological singularity‘ has been in the air. Maybe it’s because I run in an unorthodox circle of deep thinkers, but over the past couple months, I’ve been roped into three conversations related to this topic. The conversations usually end with some version of “ah shucks, machine learning is developing at a fast rate, so we are all doomed. And have you seen those deep learning videos? Computers are learning to play 35 year old video games?! Put this on an exponential trend and we are D00M3d!”

Computers are now learning the rules of this game and then playing it optimally. Are we all doomed?

Computers are now learning the rules of this game, from visual input only, and then playing it optimally. Are we all doomed?

So what is the technological singularity? My personal translation is: are we on the verge of narcissistic flesh-eating robots stealing our lunch money while we commute to the ‘special school for slow sapiens’?

This is an especially hyperbolic view, and I want to be clear to distinguish ‘machine learning‘ from ‘artificial consciousness.’ The former seems poised for explosive growth but the latter seems to require breakthroughs in our understanding of the fundamental science. The two concepts are often equated when defining the singularity, or even artificial intelligence, but I think it’s important to distinguish these two concepts. Without distinguishing them, people sometimes make the faulty association: machine_learning_progress=>AI_progress=>artificial_consciousness_progress.

I’m generally an optimistic person, but on this topic, I’m especially optimistic about humanity’s status as machine overlords for at least the next ~100 years. Why am I so optimistic? Quantum information (QI) theory has a secret weapon. And that secret weapon is obviously Scott Aaronson (and his brilliant friends+colleagues+sidekicks; especially Alex Arkhipov in this case.) Over the past few years they have done absolutely stunning work related to understanding the computational complexity of linear optics. They colloquially call this work Boson sampling.

What I’m about to say is probably extremely obvious to most people in the QI community, but I’ve had conversations with exquisitely well educated people–including a Nobel Laureate–and very few people outside of QI seem to be aware of Aaronson and Arkhipov’s (AA’s) results. Here’s a thought experiment: does a computer have all the hardware required to simulate the human brain? For a long time, many people thought yes, and they even created a more general hypothesis called the “extended Church-Turring hypothesis.”

An interdisciplinary group of scientists has long speculated that quantum mechanics may stand as an obstruction towards this hypothesis. In particular, it’s believed that quantum computers would be able to efficiently solve some problems that are hard for a classical computer. These results led people, possibly Roger Penrose most notably, to speculate that consciousness may leverage these quantum effects. However, for many years, there was a huge gap between quantum experiments and the biology of the human brain. If I ever broached this topic at a dinner party, my biologist friends would retort: “but the brain is warm and wet, good luck managing decoherence.” And this seems to be a valid argument against the brain as a universal quantum computer. However, one of AA’s many breakthroughs is that they paved the way towards showing that a rather elementary physical system can gain speed-ups on certain classes of problems over classical computers. Maybe the human brain has a Boson sampling module?

More specifically, AA’s physical setup involves being able to: generate identical photons; send them through a network of beamsplitters, phase shifters and mirrors; and then count the number of photons in each mode through ‘nonadaptive’ measurements. This setup computes the permanent of a matrix, which is known to be a hard problem classically. AA showed that if there exists a polynomial-time classical algorithm which samples from the same probability distribution, then the polynomial hierarchy would collapse to the third level (this last statement would be very bad for theoretical computer science and therefore for humans; ergo probably not true.) I should also mention that when I learned the details of these results, during Scott’s lectures this past January at the Israeli Insitute of Advanced Studies’ Winter School in Theoretical Physics, that there was one step in the proof which was not rigorous. Namely, they rely on a conjecture in random matrix theory–but at least they have simulations indicating the conjecture should be true.

Nitty gritty details aside, I find the possibility that this simple system is gaining a classical speed-up compelling in the conversation about consciousness. Especially considering that finding permanents is actually useful for some combinatorics problems. When you combine this with Nature’s mischievous manner of finding ways to use the tools available to it, it seems plausible to me that the brain is using something like Boson sampling for at least one non-trivial task towards consciousness. If not Boson sampling, then maybe ‘Fermion smashing’ or ‘minimal surface finding’ or some other crackpottery words I’m coming up with on the fly. The point is, this result opens a can of worms.

AA’s results have bred new life into my optimism towards humanity’s ability to rule the lands and interwebs for at least the next few decades. Or until some brilliant computer scientist proves that human consciousness is in P. If nothing else, it’s a fun topic for wild dinner party speculation.