Holography and the MERA

The AdS/MERA correspondence has been making the rounds of the blogosphere with nice posts by Scott Aaronson and Sean Carroll, so let’s take a look at the topic here at Quantum Frontiers.

The question of how to formulate a quantum theory of gravity is a long-standing open problem in theoretical physics. Somewhat recently, an idea that has gained a lot of traction (and that Spiros has blogged about before) is emergence. This is the idea that space and time may emerge from some more fine-grained quantum objects and their interactions. If we could understand how classical spacetime emerges from an underlying quantum system, then it’s not too much of a stretch to hope that this understanding would give us insight into the full quantum nature of spacetime.

One type of emergence is exhibited in holography, which is the idea that certain (D+1)-dimensional systems with gravity are exactly equivalent to D-dimensional quantum theories without gravity. (Note that we’re calling time a dimension here. For example, you would say that on a day-to-day basis we experience D = 4 dimensions.) In this case, that extra +1 dimension and the concomitant gravitational dynamics are emergent phenomena.

A nice aspect of holography is that it is explicitly realized by the AdS/CFT correspondence. This correspondence proposes that a particular class of spacetimes—ones that asymptotically look like anti-de Sitter space, or AdS—are equivalent to states of a particular type of quantum system—a conformal field theory, or CFT. A convenient visualization is to draw the AdS spacetime as a cylinder, where time marches forward as you move up the cylinder and different slices of the cylinder correspond to snapshots of space at different instants of time. Conveniently, in this picture you can think of the corresponding CFT as living on the boundary of the cylinder, which, you should note, has one less dimension than the “bulk” inside the cylinder.

board

Even within this nice picture of holography that we get from the AdS/CFT correspondence, there is a question of how exactly do CFT, or boundary quantities map onto quantities in the AdS bulk. This is where a certain tool from quantum information theory called tensor networks has recently shown a lot of promise.

A tensor network is a way to efficiently represent certain states of a quantum system. Moreover, they have nice graphical representations which look something like this:

 mera

Beni discussed one type of tensor network in his post on holographic codes. In this post, let’s discuss the tensor network shown above, which is known as the Multiscale Entanglement Renormalization Ansatz, or MERA.

The MERA was initially developed by Guifre Vidal and Glen Evenbly as an efficient approximation to the ground state of a CFT. Roughly speaking, in the picture of a MERA above, one starts with a simple state at the centre, and as you move outward through the network, the MERA tells you how to build up a CFT state which lives on the legs at the boundary. The MERA caught the eye of Brian Swingle, who noticed that it looks an awfully lot like a discretization of a slice of the AdS cylinder shown above. As such, it wasn’t a preposterously big leap to suggest a possible “AdS/MERA correspondence.” Namely, perhaps it’s more than a simple coincidence that a MERA both encodes a CFT state and resembles a slice of AdS. Perhaps the MERA gives us the tools that are required to construct a map between the boundary and the bulk!

So, how seriously should one take the possibility of an AdS/MERA correspondence? That’s the question that my colleagues and I addressed in a recent paper. Essentially, there are several properties that a consistent holographic theory should satisfy in both the bulk and the boundary. We asked whether these properties are still simultaneously satisfied in a correspondence where the bulk and boundary are related by a MERA.

What we found was that you invariably run into inconsistencies between bulk and boundary physics, at least in the simplest construals of what an AdS/MERA correspondence might be. This doesn’t mean that there is no hope for an AdS/MERA correspondence. Rather, it says that the simplest approach will not work. For a good correspondence, you would need to augment the MERA with some additional structure, or perhaps consider different tensor networks altogether. For instance, the holographic code features a tensor network which hints at a possible bulk/boundary correspondence, and the consistency conditions that we proposed are a good list of checks for Beni and company as they work out the extent to which the code can describe holographic CFTs. Indeed, a good way to summarize how our work fits into the picture of quantum gravity alongside holography and tensors networks is by saying that it’s nice to have good signposts on the road when you don’t have a map.

Hello, my name is QUANTUM MASTER EQUATION

“Why does it have that name?”

I’ve asked in seminars, in lectures, in offices, and at group meetings. I’ve asked about physical conjectures, about theorems, and about mathematical properties.

“I don’t know.” Lecturers have shrugged. “It’s just a name.”

https://en.wikipedia.org/wiki/Name_tag

This spring, I asked about master equations. I thought of them as tools used in statistical mechanics, the study of vast numbers of particles. We can’t measure vast numbers of particles, so we can’t learn about stat-mech systems everything one might want to know. The magma beneath Santorini, for example, consists of about 1024 molecules. Good luck measuring every one.

http://thewatchers.adorraeli.com/2012/04/18/the-santorini-volcano-caldera-is-awake-again-and-rapidly-deforming/

Imagine, as another example, using a quantum computer to solve a problem. We load information by initializing the computer to a certain state: We orient the computer’s particles in certain directions. We run a program, then read out the output.

Suppose the computer sits on a tabletop, exposed to the air like leftover casserole no one wants to save for tomorrow. Air molecules bounce off the computer, becoming entangled with the hardware. This entanglement, or quantum correlation, alters the computer’s state, just as flies alter a casserole.* To understand the computer’s output—which depends on the state, which depends on the air—we must have a description of the air. But we can’t measure all those air molecules, just as we can’t measure all the molecules in Santorini’s magma.

http://www.savingyoudinero.com/2012/06/05/chicken-fajita-casserole/

We can package our knowledge about the computer’s state into a mathematical object, called a density operator, labeled by ρ(t). A quantum master equation describes how ρ(t) changes. I had no idea, till this spring, why we call master equations “master equations.” Had someone named “John Master” invented them? Had the inspiration for the Russell Crowe movie Master and Commander? Or the Igor who lisps, “Yeth, mathter” in adaptations of Frankenstein?

http://www.wallcoo.net/movie/master_and_commander/html/image4.html

Jenia Mozgunov, a fellow student and Preskillite, proposed an answer: Using master equations, we can calculate how averages of observable properties change. Imagine describing a laser, a cavity that spews out light. A master equation reveals how the average number of photons (particles of light) in the cavity changes. We want to predict these averages because experimentalists measure them. Because master equations spawn many predictions—many equations—they merit the label “master.”

Jenia’s hypothesis appealed to me, but I wanted certainty. I wanted Truth. I opened my laptop and navigated to Facebook.

“Does anyone know,” I wrote in my status, “why master equations are called ‘master equations’?”

Ian Durham, a physicist at St. Anselm College, cited Tom Moore’s Six Ideas that Shaped Physics. Most physics problems, Ian wrote, involve “some overarching principle.” Example principles include energy conservation and invariance under discrete translations (the system looks the same after you step in some direction). A master equation encapsulates this principle.

Ian’s explanation sounded sensible. But fewer people “liked” his reply on Facebook than “liked” a quip by a college friend: Master equations deserve their name because “[t]hey didn’t complete all the requirements for the doctorate.”

My advisor, John Preskill, dug through two to three books, one set of lecture notes, one German Wikipedia page, one to two articles, and Google Scholar. He concluded that Nordsieck, Lamb, and Uhlenbeck coined “master equation.” According to a 1940 paper of theirs,** “When the probabilities of the elementary processes are known, one can write down a continuity equation for W [a set of probabilities], from which all other equations can be derived and which we will call therefore the ‘master’ equation.”

“Are you sure you were meant to be a physicist,” I asked John, “rather than a historian?”

“Procrastination is a powerful motivator,” he replied.

Lecturers have shrugged at questions about names. Then they’ve paused, pondered, and begun, “I guess because…” Theorems and identities derive their names from symmetries, proof techniques, geometric illustrations, and applications to problems I’d thought unrelated. A name taught me about uses for master equations. Names reveal physics I wouldn’t learn without asking about names. Names aren’t just names. They’re lamps and guides.

Pity about the origin of “master equation,” though. I wish an Igor had invented them.

http://fashions-cloud.com/pages/y/young-frankenstein-igor-brain/

*Apologies if I’ve spoiled your appetite.

**A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, “On the theory of cosmic-ray showers I,” Physica 7, 344-60 (1940), p. 353.

20 years of qubits: the arXiv data

Editor’s Note: The preceding post on Quantum Frontiers inspired the always curious Paul Ginsparg to do some homework on usage of the word “qubit” in papers posted on the arXiv. Rather than paraphrase Paul’s observations I will quote his email verbatim, so you can experience its Ginspargian style.qubit-data

fig has total # uses of qubit in arxiv (divided by 10) per month, and
total # docs per month:
an impressive 669394 total in 29587 docs.

the graph starts at 9412 (dec '94), but that is illusory since qubit
only shows up in v2 of hep-th/9412048, posted in 2004.
the actual first was quant-ph/9503016 by bennett/divicenzo/shor et al
(posted 23 Mar '95) where they carefully attribute the term to
schumacher ("PRA, to appear '95") and jozsa/schumacher ("J. Mod Optics
'94"), followed immediately by quant-ph/9503017 by deutsch/jozsa et al
(which no longer finds it necessary to attribute term)

[neither of schumacher's first two articles is on arxiv, but otherwise
probably have on arxiv near 100% coverage of its usage and growth, so
permits a viral epidemic analysis along the lines of kaiser's "drawing
theories apart"  of use of Feynman diagrams in post wwII period].

ever late to the party, the first use by j.preskill was
quant-ph/9602016, posted 21 Feb 1996

#articles by primary subject area as follows (hep-th is surprisingly
low given the firewall connection...):

quant-ph 22096
cond-mat.mes-hall 3350
cond-mat.supr-con 880
cond-mat.str-el 376
cond-mat.mtrl-sci 250
math-ph 244
hep-th 228
physics.atom-ph 224
cond-mat.stat-mech 213
cond-mat.other 200
physics.optics 177
cond-mat.quant-gas 152
physics.gen-ph 120
gr-qc 105
cond-mat 91
cs.CC 85
cs.IT 67
cond-mat.dis-nn 55
cs.LO 49
cs.CR 43
physics.chem-ph 33
cs.ET 25
physics.ins-det 21
math.CO,nlin.CD 20
physics.hist-ph,physics.bio-ph,math.OC 19
hep-ph 18
cond-mat.soft,cs.DS,math.OA 17
cs.NE,cs.PL,math.QA 13
cs.AR,cs.OH 12
physics.comp-ph 11
math.LO 10
physics.soc-ph,physics.ed-ph,cs.AI 9
math.ST,physics.pop-ph,cs.GT 8
nlin.AO,astro-ph,cs.DC,cs.FL,q-bio.GN 7
nlin.PS,math.FA,cs.NI,math.PR,q-bio.NC,physics.class-ph,math.GM,
physics.data-an 6
nlin.SI,math.CT,q-fin.GN,cs.LG,q-bio.BM,cs.DM,math.GT 5
math.DS,physics.atm-clus,q-bio.PE 4
math.DG,math.CA,nucl-th,q-bio.MN,math.HO,stat.ME,cs.MS,q-bio.QM,
math.RA,math.AG,astro-ph.IM,q-bio.OT 3
stat.AP,cs.CV,math.SG,cs.SI,cs.SE,cs.SC,cs.DB,stat.ML,physics.med-ph,
math.RT 2
cs.CL,cs.CE,q-fin.RM,chao-dyn,astro-ph.CO,q-fin.ST,math.NA,
cs.SY,math.MG,physics.plasm-ph,hep-lat,math.GR,cs.MM,cs.PF,math.AC,
nucl-ex 1

Who named the qubit?

Perhaps because my 40th wedding anniversary is just a few weeks away, I have been thinking about anniversaries lately, which reminded me that we are celebrating the 20th anniversary of a number of milestones in quantum information science. In 1995 Cirac and Zoller proposed, and Wineland’s group first demonstrated, the ion trap quantum computer. Quantum error-correcting codes were invented by Shor and Steane, entanglement concentration and purification were described by Bennett et al., and there were many other fast-breaking developments. It was an exciting year.

But the event that moved me to write a blog post is the 1995 appearance of the word “qubit” in an American Physical Society journal. When I was a boy, two-level quantum systems were called “two-level quantum systems.” Which is a descriptive name, but a mouthful and far from euphonious. Think of all the time I’ve saved in the past 20 years by saying “qubit” instead of “two-level quantum system.” And saying “qubit” not only saves time, it also conveys the powerful insight that a quantum state encodes a novel type of information. (Alas, the spelling was bound to stir controversy, with the estimable David Mermin a passionate holdout for “qbit”. Give it up, David, you lost.)

Ben Schumacher. Thanks for the qubits, Ben!

Ben Schumacher. Thanks for the qubits, Ben!

For the word “qubit” we know whom to thank: Ben Schumacher. He introduced the word in his paper “Quantum Coding” which appeared in the April 1995 issue of Physical Review A. (History is complicated, and in this case the paper was actually submitted in 1993, which allowed another paper by Jozsa and Schumacher to be published earlier even though it was written and submitted later. But I’m celebrating the 20th anniversary of the qubit now, because otherwise how will I justify this blog post?)

In the acknowledgments of the paper, Ben provided some helpful background on the origin of the word:

The term “qubit” was coined in jest during one of the author’s many intriguing and valuable conversations with W. K. Wootters, and became the initial impetus for this work.

I met Ben (and other luminaries of quantum information theory) for the first time at a summer school in Torino, Italy in 1996. After reading his papers my expectations were high, all the more so after Sam Braunstein warned me that I would be impressed: “Ben’s a good talker,” Sam assured me. I was not disappointed.

(I also met Asher Peres at that Torino meeting. When I introduced myself Asher asked, “Isn’t there someone with a similar name in particle theory?” I had no choice but to come clean. I particularly remember that conversation because Asher told me his secret motivation for studying quantum entanglement: it might be important in quantum gravity!)

A few years later Ben spent his sabbatical year at Caltech, which gave me an opportunity to compose a poem for the introduction to Ben’s (characteristically brilliant) talk at our physics colloquium. This poem does homage to that famous 1995 paper in which Ben not only introduced the word “qubit” but also explained how to compress a quantum state to the minimal number of qubits from which the original state can be recovered with a negligible loss of fidelity, thus formulating and proving the quantum version of Shannon’s famous source coding theorem, and laying the foundation for many subsequent developments in quantum information theory.

Sometimes when I recite a poem I can sense the audience’s appreciation. But in this case there were only a few nervous titters. I was going for edgy but might have crossed the line into bizarre.. Since then I’ve (usually) tried to be more careful.

(For reading the poem, it helps to know that the quantum state appears to be random when it has been compressed as much as possible.)

On Quantum Compression (in honor of Ben Schumacher)

Ben.
He rocks.
I remember
When
He showed me how to fit
A qubit
In a small box.

I wonder how it feels
To be compressed.
And then to pass
A fidelity test.

Or does it feel
At all, and if it does
Would I squeal
Or be just as I was?

If not undone
I’d become as I’d begun
And write a memorandum
On being random.
Had it felt like a belt
Of rum?

And might it be predicted
That I’d become addicted,
Longing for my session
Of compression?

I’d crawl
To Ben again.
And call,
“Put down your pen!
Don’t stall!
Make me small!”