A year ago, the “I’m a little teapot” song kept playing in my head.
I was finishing a collaboration with David Limmer, a theoretical chemist at the University of California Berkeley. David studies quantum and classical systems far from equilibrium, including how these systems exchange energy and information with their environments. Example systems include photoisomers.
A photoisomer is a molecular switch. These switches appear across nature and technologies. We have photoisomers in our eyes, and experimentalists have used photoisomers to boost solar-fuel storage. A photoisomer has two functional groups, or collections of bonded atoms, attached to a central axis.
Your average-Joe photoisomer spends much of its life in equilibrium, exchanging heat with room-temperature surroundings. The molecule has the shape above, called the cis configuration. Imagine shining a laser or sunlight on the photoisomer. The molecule can absorb a photon, or particle of light, gaining energy. The energized switch has the opportunity to switch: One chemical group can rotate downward. The molecule will occupy its trans configuration.
The molecule now has more energy than it had while equilibrium, albeit less energy than it had right after absorbing the photon. The molecule can remain in this condition for a decent amount of time. (Experts: The molecule occupies a metastable state.) That is, the molecule can store sunlight. For that reason, experimentalists at Harvard and MIT attached photoisomers to graphene nanotubules, improving the nanotubules’ storage of solar fuel.
With what probability does a photoisomer switch upon absorbing a photon? This question has resisted easy answering, because photoisomers prove difficult to model: They’re small, quantum, and far from equilibrium. People have progressed by making assumptions, but such assumptions can lack justifications or violate physical principles. David wanted to derive a simple, general bound—of the sort in which thermodynamicists specialize—on a photoisomer’s switching probability.
He had a hunch as to how he could derive such a bound. I’ve blogged, many times, about thermodynamic resource theories. Thermodynamic resource theories are simple models, developed in quantum information theory, for exchanges of heat, particles, information, and more. These models involve few assumptions: the conservation of energy, quantum theory, and, to some extent, the existence of a large environment (Markovianity). With such a model, David suspected, he might derive his bound.
I knew nothing about photoisomers when I met David, but I knew about thermodynamic resource theories. I’d contributed to their development, to the theorems that have piled up in the resource-theory corner of quantum information theory. Then, the corner had given me claustrophobia. Those theorems felt so formal, abstract, and idealized. Formal, abstract theory has drawn me ever since I started studying physics in college. But did resource theories model physical reality? Could they impact science beyond our corner of quantum information theory? Did resource theories matter?
I called for connecting thermodynamic resource theories to physical reality four years ago, in a paper that begins with an embarrassing story about me. Resource theorists began designing experiments whose results should agree with our theorems. Theorists also tried to improve the accuracy with which resource theories model experimentalists’ limitations. See David’s and my paper for a list of these achievements. They delighted me, as a step toward the broadening of resource theories’ usefulness.
Like any first step, this step pointed toward opportunities. Experiments designed to test our theorems essentially test quantum mechanics. Scientists have tested quantum mechanics for decades; we needn’t test it much more. Such experimental proposals can push experimentalists to hone their abilities, but I hoped that the community could accomplish more. We should be able to apply resource theories to answer questions cultivated in other fields, such as condensed matter and chemistry. We should be useful to scientists outside our corner of quantum information.
David’s idea lit me up like photons on a solar-fuel-storage device. He taught me about photoisomers, I taught him about resource theories, and we derived his bound. Our proof relies on the “second laws of thermodynamics.” These abstract resource-theory results generalize the second law of thermodynamics, which helps us understand why time flows in only one direction. We checked our bound against numerical simulations (experts: of Lindbladian evolution). Our bound is fairly tight if the photoisomer has a low probability of absorbing a photon, as in the Harvard-MIT experiment.
Experts: We also quantified the photoisomer’s coherences relative to the energy eigenbasis. Coherences can’t boost the switching probability, we concluded. But, en route to this conclusion, we found that the molecule is a natural realization of a quantum clock. Our quantum-clock modeling extends to general dissipative Landau-Zener transitions, prevalent across condensed matter and chemistry.
As I worked on our paper one day, a jingle unfolded in my head. I recognized the tune first: “I’m a little teapot.” I hadn’t sung that much since kindergarten, I realized. Lyrics suggested themselves:
I’m a little isomer
with two hands.
Here is my cis pose;
here is my trans.
Stand me in the sunlight;
watch me spin.
I’ll keep solar
energy in!
The song lodged itself in my head for weeks. But if you have to pay an earworm to collaborate with David, do.
I think that the theme song for my Ph.D. thesis was “March of the Toreadors” (especially as it is used in blooper reels).
It goes without saying that one must dance while singing this song.
Shortly after the lyrics suggested themselves, choreography did. I know; I know; I should post a video…
Pingback: A quantum walk down memory lane | Quantum Frontiers
Pingback: A quantum walk down memory lane |
Pingback: Quantum estuary | Quantum Frontiers