Introduction to Quantum Information

First slide, viewed on my laptop.

First slide, viewed on my laptop.

I’m lazy. The only reason I ever do anything is that sometimes in a weak moment I agree to do something, and after that I don’t have the nerve to back out. And that’s how I happened to give the introductory lectures leading off the 12th Canadian Summer School on Quantum Information last June.

The video of the lectures recently became available on YouTube in two one-hour segments, which is my reason for posting about them now:

Here are the slides I used. The school is pitched at beginning graduate students who have a solid background in quantum mechanics but may not be very familiar with quantum information concepts.

Andrew Childs, who knows my character flaws well, invited me to lecture at the school nearly a year in advance. Undaunted by my silence, he kept resending the invitation at regular intervals to improve his chances of catching me on a weak day. Sure enough, feeling a twinge of guilt over blowing off David Poulin when he made the same request the year before, and with a haunting sense that I had refused to do something Andrew had asked me to do on an earlier occasion (though I can’t recall what), one day in September I said yes, feeling the inevitable stab of regret just seconds after pushing the Send button. I consoled myself with the thought that this could be a Valuable Service to the Community.

Actually, it was fun to think about what to include in my lectures. The job was easier because I knew that the other lecturers who would follow me, all of them excellent, would be able to dig more deeply into some of the topics I would introduce. I decided that my first responsibility should be to convey what makes the topic important and exciting, without getting too bogged down in technicalities which were likely to be addressed later in the school. That meant emphasizing the essence of what makes quantum information different from ordinary “classical” information, and expounding on the theme that classical systems cannot in general simulate quantum systems efficiently.

The conditions under which I delivered the lectures were not quite ideal. Preparing PowerPoint slides is incredibly time consuming, and I believe in the principle that such a task can fill however much time is allotted for it. Therefore, as a matter of policy, I try to delay starting on the slides until the last moment, which has sometimes gotten me into hot water. In this case it meant working on the slides during the flight from LA to Toronto, in the car from Toronto to Waterloo, and then for a few more hours in my hotel room until I went to bed about midnight, with my alarm set for 6 am so I could finish my preparations in the morning.

It seemed like a good plan. But around 2 am I was awakened by an incredibly loud pounding, which sounded like a heavy mallet hammering on the ceiling below me. As I discovered when I complained to the front desk, this was literally true — they were repairing the air-conditioning ducts in the restaurant underneath my room. I was told that the hotel could not do anything about the noise, because the restaurant is under different ownership. I went back to bed, but lost patience around 3:30 am and demanded a different room, on the other side of the hotel. I was settled in my (perfectly quiet) new room by 4 am, but I was too keyed up to sleep, and read a book on my iPad until it was 6 am and time to get up.

I worked in my room as late as I could, then grabbed a taxi, showing the driver a map with the location of the summer school marked on it. Soon after he dropped me off, I discovered I was on the wrong side of the University of Waterloo campus, about a 20 minute walk from where I was supposed to be. It was about 8:15, and the school was to begin at 8:30, so I started jogging, though not, as it turned out, in the right direction. After twice asking passersby for help, I got to the lecture hall just in time, my heart pounding and my shirt soaked with sweat. Not in the best of moods, I barked at Andrew that I needed coffee, which he dutifully fetched for me.

Though my head was pounding and my legs felt rubbery, adrenalin kicked in as I started lecturing. I felt like I was performing in a lower gear than usual, but I wasn’t sure whether the audience could tell.

And as often happens when I reluctantly agree to do something, when it was all over I was glad I had done it.

The Future Of Education

I’m a senior software engineer at Knewton, a company that aims to personalize education through adaptive learning technology. Also, in my free time I write stories and design games to teach kids about computer science as DrTechniko. My How To Train Your Robot game, for example, lets kids “program” their parents to do tasks for them. It’s intuitive and fun for kids because they get to “command” their parents. At the same time the parents get a good workout by the end of the class.

But, why do I care about kids and computer science education?

  • Computer science combines problem solving with practical outcomes for a society that is increasingly high-tech.
  • Creative problem solving needs to become the no.1 skill that schools teach today. Information is already available everywhere. Kids need to know how to put this together and solve real, challenging problems.
  • We need to feel comfortable with technology and control it. If we don’t teach this culture to our five-year-olds, then we can’t grow as a society and civilization. We have to “learn to drive a car and let go of the horse”. The lawyer of 2034 needs to know how to program. Everything around her will be programmable.

All of us working to revolutionize education have such goals in mind and we want to break the current educational stereotypes, because they won’t get us there. Instead, every kid becomes a “copy” coming out of a factory-like assembly line called the school. Only recently have we began to develop the tools that allow students to personalize the way they learn new things. The next step is to give kids the tools they need to learn how to learn the things they need in order to unleash their creative potential.

Continue reading

Showtime for Sophomores

Exciting a square Chladni plate with a violin bow.

One of the many unique features of Caltech is our core curriculum. All of our undergraduates are required to take five terms of physics and five terms of math (all three terms freshman year and the fall and winter terms sophomore year) — though this will change for the class entering in the fall of 2013.

Each fall, about 170 sophomores take Physics 2a, a course on vibrations, waves, and quantum mechanics, while the remaining 60 or so sophomores take Physics 12a, a souped up course covering similar material at a level more appropriate for physics concentrators.

This term I am teaching Physics 2a. While 170 students is a lot more than in most courses I teach at Caltech, the workload is manageable, in part because I share the lecturing duties with another professor, and in part because we have a staff of capable and hard working Teaching Assistants who handle recitation sections and grade the homework and quizzes.

Continue reading