Making sci-fi teleportation sound less crazy

laser_refraction

Laser beam bending due to a change in the speed of light in water.

If you ever wanted to see a sci-fi plot that expertly applied advanced physical concepts so that with a bit of imagination teleporting a human was not as unbelievable as most of the teleportation scenarios we see in the movies, keep reading.

Years ago, when I was still in Russia, I was working on a back-story for a sci-fi game I was playing with friends. In the game, players were given stones (from Mars!) that could change the fundamental constants of nature: electron charge e, speed of light c and Planck constant h. I had already worked out the effects these stones would produce on the space around them (I suggest it as an exercise to the nerdy reader – once you are done thinking about it, see my answer below), so my next task was to envision a big scientific project centered around those stones, with a solid foundation on real physics and a portal to Mars as a final goal. As it turned out, some unforeseen consequences included blowing up the whole lab and scattering the stones in the nearby forest. That’s the back-story.

It all worked beautifully on paper. I imagined that materials could be programmed to obey different values of fundamental constants. These Martian stones were supposed to be the first encounter humanity had with matter where such effects could be observed and studied. The effects extended to a region around the stone, with weird things happening on the boundary of that region. For one thing, energy was not conserved in the vicinity of these stones.

Now having control over e, c and h, the scientists would leverage this new-found power to try to move the fine structure constant e^2/(\hbar c) to what is known as the Landau pole. Such a feat would result in infinitely strong interactions between particles, so that the energetic content of space-time would jump through the roof and a black hole would form. If one was lucky, even a traversable wormhole would form, which is what the scientists were hoping for, because back on Mars these things could have formed naturally, and the lab wormhole would connect to the Martian network.

If you’ve read all this and are asking yourself “What just happened?”, see all the physical concepts explained below: Continue reading

Quantum = Pink

Need we say more?

What color do you imagine when you close your eyes and think “Quantum”? If you are to buy a case for your quantum computer, have you already picked your favorite color? (Okay, maybe it’s too early for that.)
Below I argue that the collective unconscious has already made the choice for you: it is going to be pink.

Excited?

Fear not. We will easily differentiate ourselves from warm and fluffy pink slippers. Our color is pink on black. Closer to purple, actually. We have good heritage: purple with white was the color of kings. But kings are no more, so let’s admit it: People think that “spooky” quantum phenomena have a purple glow around them. The disaster movie “Quantum Apocalypse” has a mysterious purple vortex approach Earth. Sci-fi now has “quantum cannons” shooting pink aura at the enemies, unleashing the chaos of uncertainty. You can’t fly your battlecruiser if you’re no longer certain you still have a battlecruiser.
Continue reading