SQuInTing in the Southwest

The 18th Annual Southwest Quantum Information and Technology (SQuInT) Workshop is an outreach and service activity of the Center for Quantum Information and Control (CQuIC), and is about to take place this February 18-20, 2016 in Albuquerque New Mexico, SQuInT2016.  With over 160 participants, 45 talks, and 60 posters, SQuInT has become one of the largest and most diverse meetings in Quantum Information Science in the United States.  Under Chief SQuInT Organizer, Prof. Akimasa Miyake, this year’s program includes reports on the ground breaking experiments in loophole-free violations Bell’s Inequalities, the latest developments in quantum dots, superconductors, and ion and neutral atom traps, and a wide range of quantum information theory.  The SQuInT 2016 Keynote will be delivered by IQIM’s very own, Prof. John Preskill.

How did SQuInT get here? Its origin stems from the history of Quantum Information Science (QIS) itself. I joined the faculty at UNM in 1995.  Those were heady times, on the heels of Shor’s  algorithm and new developments in quantum information theory, which  occurred at inflationary speeds.  Simultaneously, Bose Einstein Condensation had just been observed.  These two developments caused a revolution in quantum optics and AMO-physics from with SQuInT was founded.

I, together with my colleague and now 20-year academic partner, Prof. Poul Jessen at the College of Optical Science, University of Arizona, focused on “optical lattices,” a brand new idea at that time, and the subject of Poul’s PhD thesis.  In Poul’s dissertation, he demonstrated that the motion of laser-cooled atoms,  trapped at the antinodes of standing waves, was quantized.  This quantum motion was reminiscent of that seen in atomic ions in Paul traps, and we set out to exploit this in optical lattices.  Indeed, a hot development of the 1990s was the ability to engineer nonclassical states of motion of ions, leveraging off of the analogy with the Jaynes-Cummings model of cavity QED.  As a side note, this capability was at the heart of the 1995 proposal by  Ignacio Cirac & Peter Zoller  for ion trap quantum computing and the immediate demonstration by Chris Monroe & Dave Wineland of the first CNOT gate.  Given these connections, in 1997 I organized a small workshop at UNM entitled Quantum Control of Atomic Motion, which brought together neutral atom trappers, ion trappers, and quantum opticians. Among the participants were Rainer Blatt, Hideo Mabuchi, Hersch Rabitz, and Dave Wineland.  Hersch’s presence was a new dimension, as we began to understand that the tools of quantum optimal control, previously developed mostly in the context of NMR and in physical chemistry, would be important for quantum control of atoms.  The meeting was repeated in 1998, as Quantum Control of Atomic Motion II.  By that time quantum computing was fully taking hold in the community.  Chris Monroe presented his logic gate results and we presented the first ideas for quantum computing in optical lattices.  The attendees decided we should be broadening the scope of the meeting to Quantum Information Science and Technology.  Hideo Mabuchi corresponded with Ike Chuang, who was at IBM-Almaden in San Jose California at the time.  Ike, of course, was at the center of the QI revolution and in December 1998 assembled a meeting of some of the key players including: Carl Caves, Richard Cleve, Chris Fuchs, Paul Kwiat, Poul Jessen, Hideo Mabuchi, David Meyer, Chris Monroe, John Preskill, Lu Sham, and  Birgitta Whaley.

 

SQ

SQuInT Founders Meeting, IBM Almaden, San Jose CA, December 1998

 

And thus SQuInT was born.  The first meeting was held in 1999 (SQuInT99) in Albuquerque New Mexico at a budget hotel known as the Holiday Inn “Mountain View.”  Mostly we had a view of the nearby truck stop. But the meeting was of the highest quality.  Our first session was Chaired by Dave Wineland.  The speakers were Serge Haroche, Jeff Kimble, and Hideo Mabuchi.  I’d say we were on the right track!

First Annual SQuInT Workshop

First Annual SQuInT Workshop, February 1999, Albuquerque NM

At this first meeting we voted on the SQuInT Logo, created by Jon Dowling

squintlogo

Here’s the backstory. Alice and Bob Kokepelli, the Hopi fertility deities, play their flutes to the dreamcatcher.   What has the dreamcathcer caught?  Part of the circuit diagram for quantum teleportation of course!

At the time, SQuInT was envisioned to be a regional network.  As QIS was a new field, the plan was to facilitate collaborations and exchange of information given the local strength in the southwestern United States.  Some of the key nodes of the SQuInT Network at the time included Caltech, IBM-Almaden, Los Alamos, NIST Boulder, UA, UCB, UCSB, UCSD, and UNM.  SQuInT took as its mission two key objectives: (1) building a network where the interdisciplinary subject matter of QIS would grow through direct interactions of theoretical and experimental physicists and computer scientists, as well as chemists, engineers, and mathematicians; (2) provide training of students, postdocs, and others who were entering a newly emerging discipline.  In line with goal (2), the Annual SQuInT Workshop has been a forum friendly to young scientists, where students and postdocs give talks alongside senior leaders in the field, and where new networks and collaborations can build.  In addition, students organized “summer retreats,” which essentially served as summer schools, since there were few courses in QIS at that time.

After its initial founding, SQuInT grew and the Annual Workshop traveled amongst the node institutions.  By the fourth meeting, we had grown to over 75 participants.

SQuInT2000s

 

After its establishment in 2007, CQuIC became the official administrative home of SQuInT.  The Annual Meeting alternates between New Mexico and one of the Node Institutions, of which there are now 30 across the United States and some international. These Nodes include universities, national laboratories, and industry, the latter of which has an increasing presence given the rapid developments in QI technologies (SQuInTNodes).   SQuInT Node institutions serve on the SQuInT Steering Committee and are the core participants in SQuInT, and can act as local hosts of the Annual Workshop.  Last year’s meeting took place in Berkeley CA with over 200 participants.

SQuInT2016

Seventeenth Annual SQuInT Meeting, February 2015, Berkeley CA

 

After 17 years serving as the Chief SQuInT Coordinator (plus 2 years of proto-SQuInT organization), I am proud to hand over the reigns to Prof. Akimasa Miyake.  SQuInT remains true to its goals of training, education, and growth of an interdisciplinary subject. Under Akimasa’s organization, we have a top-notch program, and I look forward to attending SQuInT, as a participant!

 

 

This entry was posted in Uncategorized by Ivan Deutsch. Bookmark the permalink.

About Ivan Deutsch

Regents' Professor of Physics and Astronomy at the University of New Mexico and co-PI of the Center for Quantum Information and Control (CQuIC). Prof. Deutsch founded Southwest Quantum Information and Technology (SQuInT). His research interests include quantum information theory and its application is in quantum optical and AMO system.

1 thought on “SQuInTing in the Southwest

  1. Roadmaps have served the gravitational wave community well, and perhaps the quantum computing community can learn lessons from them. Here are two:

    • Sheila E. Dwyer’s (and colleagues) survey article “A Gravitational Wave Detector with Cosmological Reach” (PRD 2015, available as arXiv:1410.0612 [astro-ph.IM]) describes concrete technical means by which “It is possible to achieve an order of magnitude improvement beyond Advanced LIGO [… such that] the reach of this detector will include a significant part of the history of star formation and allow observation of most solar mass compact object binary in-spirals throughout the universe.”

    • Barbara Terhal’s survey article “Quantum Error Correction for Quantum Memories” (RMP 2015, available as arXiv:1302.3428 [quant-ph]) describes concrete technical means by which “One can hope to see scalable error correction [of quantum memories], fine-tuned to experimental capabilities and constraints, in the years to come.”

    The parallels are evident and striking, yes? Especially if we take the “long view” that John Preskill so cogently recommends. That’s why plenty of people (me at least) are looking forward to seeing tomorrow (hopefully) the slides from John’s SQuINT talk Our Quantum Future.

Your thoughts here.