Before I arrived in Los Angeles, I thought I might need to hit the brakes a bit with some of the radical physics theories I’d encountered during my preliminary research. After all, these were scientists I was meeting: people who “engage in a systematic activity to acquire knowledge that describes and predicts the natural world”, according to Wikipedia. It turns out I wasn’t hardly as far-out as they were.
I could recount numerous anecdotes that exemplify my encounter with the frighteningly intelligent and vivid imagination of the people at LIGO with whom I had the great pleasure of working – Prof. Rana X. Adhikari, Maria Okounkova, Eric Quintero, Maximiliano Isi, Sarah Gossan, and Jameson Graef Rollins – but in the end it all boils down to a parable about fish.
Rana’s version, which he recounted to me on our first meeting, goes as follows: “There are these two young fish swimming along, and a scientist approaches the aquarium and proclaims, “We’ve finally discovered the true nature of water!” And the two young fish swim on for a bit, and then eventually one of them looks over at the other and goes, “What the hell is water?”” In David Foster Wallace’s more famous version, the scientist is not a scientist but an old fish, who greets them saying, “Morning, boys. How’s the water?”
The difference is not circumstantial. Foster Wallace’s version is an argument against “unconsciousness, the default setting, the rat race, the constant gnawing sense of having had, and lost, some infinite thing” – personified by the young fish – and an urgent call for awareness – personified by the old fish. But in Rana’s version, the matter is more hard-won: as long as they are fish, they haven’t the faintest apprehension of the very concept of water: even a wise old fish would fail to notice. In this adaptation, gaining awareness of that which is “so real and essential, so hidden in plain sight all around us, all the time” as Foster Wallace describes it, demands much more than just an effort in mindfulness. It demands imagining the unimaginable.
Albert Einstein once said that “Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, while imagination embraces the entire world, and all there ever will be to know and understand.” But the question remains of how far our imagination can reach, and where the radius ends for us in “what there ever will be to know and understand”, versus that which happens to be. My earlier remark about LIGO scientists’ being far-out does not at all refer to a speculative disposition, which would characterise amateur anything-goes, and does go over-the-edge pseudo-science. Rather, it refers to the high level of creativity that is demanded of physicists today, and to the untiring curiosity that drives them to expand the limits of that radius, despite all odds.
The possibility of imagination has become an increasingly animating thought within my currently ongoing project:
As an independent curator of contemporary art, I travelled to Caltech for a 6-week period of research, towards developing an exhibition that will invite the public to engage with some of the highly challenging implications around the concept of time in physics. In it, I identify LIGO’s breakthrough detection of gravitational waves as an unparalleled incentive by which to acquire – in broad cultural terms – a new sense of time that departs from the old and now wholly inadequate one. After LIGO’s announcement proved that time fluctuation not only happens, but that it happened here, to us, on a precise date and time, it is finally possible for a broader public to relate, however abstract some of the concepts from the field of physics may remain. More simply put: we can finally sense that the water is moving.[1]
One century after Einstein’s Theory of General Relativity, most people continue to hold a highly impoverished idea of the nature of time, despite it being perhaps the most fundamental element of our existence. For 100 years there was no blame or shame in this. Because within all possible changes to the three main components of the universe – space, time & energy – the fluctuation of time was always the only one that escaped our sensorial capacities, existing exclusively in our minds, and finding its fullest expression in mathematical language. If you don’t speak mathematics, time fluctuation remains impossible to grasp, and painful to imagine.
But on February 11th, 2016, this situation changed dramatically.
On this date, a televised announcement told the world of the first-ever sensory detection of time-fluctuation, made with the aid of the most sensitive machine ever to be built by mankind. Finally, we have sensorial access to variations in all components of the universe as we know it. What is more, we observe the non-static passage of time through sound, thereby connecting it to the most affective of our senses.
Of course, LIGO’s detection is limited to time fluctuation and doesn’t yet make other mind-bending behaviours of time observable. But this is only circumstantial. The key point is that we can take this initial leap, and that it loosens our feet from the cramp of Newtonian fixity. Once in this state, gambolling over to ideas about zero time tunnelling, non-causality, or the future determining the present, for instance, is far more plausible, and no longer painful but rather seductive, at least, perhaps, for the playful at heart.
Taking a slight off-road (to be re-routed in a moment): there is a common misconception about children’s allegedly free-spirited creativity. Watching someone aged between around 4 and 15 draw a figure will demonstrate quite clearly just how taut they really are, and that they apply strict schemes that follow reality as they see and learn to see it. Bodies consistently have eyes, mouths, noses, heads, rumps and limbs, correctly placed and in increasingly realistic colours. Ask them to depart from these conventions – “draw one eye on his forehead”, “make her face green” – like masters such as Pablo Picasso and Henri Matisse have done – and they’ll likely become very upset (young adolescents being particularly conservative, reaching the point of panic when challenged to shed consensus).
This is not to compare the lay public (including myself) to children, but to suggest that there’s no inborn capacity – the unaffected, ‘genius’ naïveté that the modernist movements of Primitivism, Art Brut and Outsider Art exalted – for developing a creativity that is of substance. Arriving at a consequential idea, in both art and physics, entails a great deal of acumen and is far from gratuitous, however whimsical the moment in which it sometimes appears. And it’s also to suggest that there’s a necessary process of acquaintance – the knowledge of something through experience – in taking a cognitive leap away from the seemingly obvious nature of reality. If there’s some truth in this, then LIGO’s expansion of our sensorial access to the fluctuation of time, together with artistic approaches that lift the remaining questions and ambiguities of spacetime onto a relational, experiential plane, lay fertile ground on which to begin to foster a new sense of time – on a broad cultural level – however slowly it unfolds.
The first iteration of this project will be an exhibition, to take place in Berlin, in July 2017. It will feature existing and newly commissioned works by established and upcoming artists from Los Angeles and Berlin, working in sound, installation and video, to stage a series of immersive environments that invite the viewers’ bodily interaction.
Though the full selection cannot be disclosed just yet, I would like here to provide a glimpse of two works-in-progress by artist-duo Evelina Domnitch & Dmitry Gelfand, whom I invited to Los Angeles to collaborate in my research with LIGO, and whose contribution has been of great value to the project.
For more details on the exhibition, please stay tuned, and be warmly welcome to visit Berlin in July!
Text & images: courtesy of the artists.
ORBIHEDRON | 2017
A dark vortex in the middle of a water-filled basin emits prismatic bursts of rotating light. Akin to a radiant ergosphere surrounding a spinning black hole, Orbihedron evokes the relativistic as well as quantum interpretation of gravity – the reconciliation of which is essential for unravelling black hole behaviour and the origins of the cosmos. Descending into the eye of the vortex, a white laser beam reaches an impassible singularity that casts a whirling circular shadow on the basin’s floor. The singularity lies at the bottom of a dimple on the water’s surface, the crown of the vortex, which acts as a concave lens focussing the laser beam along the horizon of the “black hole” shadow. Light is seemingly swallowed by the black hole in accordance with general relativity, yet leaks out as quantum theory predicts.
ER = EPR | 2017
Two co-rotating vortices, joined together via a slender vortical bridge, lethargically drift through a body of water. Light hitting the water’s surface transforms the vortex pair into a dynamic lens, projecting two entangled black holes encircled by shimmering halos. As soon as the “wormhole” link between the black holes rips apart, the vortices immediately dissipate, analogously to the collapse of a wave function. Connecting distant black holes or two sides of the same black hole, might wormholes be an example of cosmic-scale quantum entanglement? This mind-bending conjecture of Juan Maldacena and Leonard Susskind can be traced back to two iconoclastic papers from 1935. Previously thought to be unrelated (both by their authors and numerous generations of readers), one article, the legendary EPR (penned by Einstein, Podolsky and Rosen) engendered the concept of quantum entanglement or “spooky action at a distance”; and the second text theorised Einstein-Rosen (ER) bridges, later known as wormholes. Although the widely read EPR paper has led to the second quantum revolution, currently paving the way to quantum simulation and computation, ER has enjoyed very little readership. By equating ER to EPR, the formerly irreconcilable paradigms of physics have the potential to converge: the phenomenon of gravity is imagined in a quantum mechanical context. The theory further implies, according to Maldacena, that the undivided, “reliable structure of space-time is due to the ghostly features of entanglement”.
[1] I am here extending our capacity to sense to that of the technology itself, which indeed measured the warping of spacetime. However, in interpreting gravitational waves from a human frame of reference (moving nowhere near the speed of light at which gravitational waves travel), they would seem to be spatial. In fact, the elongation of space (a longer wavelength) directly implies that time slows down (a longer wave-period), so that the two are indistinguishable.
Isabel de Sena
Pingback: What is Water 2.0