Quantum Error Correction with Molecules

In the previous blog post (titled, “On the Coattails of Quantum Supremacy“) we started with Google and ended up with molecules! I also mentioned a recent paper by John Preskill, Jake Covey, and myself (see also this videoed talk) where we assume that, somewhere in the (near?) future, experimentalists will be able to construct quantum superpositions of several orientations of molecules or other rigid bodies. Next, I’d like to cover a few more details on how to construct error-correcting codes for anything from classical bits in your phone to those future quantum computers, molecular or otherwise.

Classical error correction: the basics

Error correction is concerned with the design of an encoding that allows for protection against noise. Let’s say we want to protect one classical bit, which is in either “0” or “1”. If the bit is say in “0”, and the environment (say, the strong magnetic field from a magnet you forgot was laying next to your hard drive) flipped it to “1” without our knowledge, an error would result (e.g., making your phone think you swiped right!)

Now let’s encode our single logical bit into three physical bits, whose 2^3=8 possible states are represented by the eight corners of the cube below. Let’s encode the logical bit as “0” —> 000 and “1” —> 111, corresponding to the corners of the cube marked by the black and white ball, respectively. For our (local) noise model, we assume that flips of only one of the three physical bits are more likely to occur than flips of two or three at the same time.

Error correction is, like many Hollywood movies, an origin story. If, say, the first bit flips in our above code, the 000 state is mapped to 100, and 111 is mapped to 011. Since we have assumed that the most likely error is a flip of one of the bits, we know upon observing that 100 must have come from the clean 000, and 011 from 111. Thus, in either case of the logical bit being “0” or “1”, we can recover the information by simply observing which state the majority of the bits are in. The same things happen when the second or third bits flip. In all three cases, the logical “0” state is mapped to one of its three neighboring points (above, in blue) while the logical “1” is mapped to its own three points, which, crucially, are distinct from the neighbors of “0”. The set of points \{000,100,010,001\} that are closer to 000 than to 111 is called a Voronoi tile.

Now, let’s adapt these ideas to molecules. Consider the rotational states of a dumb-bell molecule consisting of two different atoms. (Let’s assume that we have frozen this molecule to the point that the vibration of the inter-atomic bond is limited, essentially creating a fixed distance between the two atoms.) This molecule can orient itself in any direction, and each such orientation can be represented as a point \mathbf{v} on the surface of a sphere. Now let us encode a classical bit using the north and south poles of this sphere (represented in the picture below as a black and a white ball, respectively). The north pole of the sphere corresponds to the molecule being parallel to the z-axis, while the south pole corresponds to the molecule being anti-parallel.

This time, the noise consists of small shifts in the molecule’s orientation. Clearly, if such shifts are small, the molecule just wiggles a bit around the z-axis. Such wiggles still allow us to infer that the molecule is (mostly) parallel and anti-parallel to the axis, as long as they do not rotate the molecule all the way past the equator. Upon such correctable rotations, the logical “0” state — the north pole — is mapped to a point in the northern hemisphere, while logical “1” — the south pole — is mapped to a point in the southern hemisphere. The northern hemisphere forms a Voronoi tile of the logical “0” state (blue in the picture), which, along with the corresponding tile of the logical “1” state (the southern hemisphere), tiles the entire sphere.

Quantum error correction

To upgrade these ideas to the quantum realm, recall that this time we have to protect superpositions. This means that, in addition to shifting our quantum logical state to other states as before, noise can also affect the terms in the superposition itself. Namely, if, say, the superposition is equal — with an amplitude of +1/\sqrt{2} in “0” and +1/\sqrt{2} in “1” — noise can change the relative sign of the superposition and map one of the amplitudes to -1/\sqrt{2}. We didn’t have to worry about such sign errors before, because our classical information would always be the definite state of “0” or “1”. Now, there are two effects of noise to worry about, so our task has become twice as hard!

Not to worry though. In order to protect against both sources of noise, all we need to do is effectively stagger the above constructions. Now we will need to design a logical “0” state which is itself a superposition of different points, with each point separated from all of the points that are superimposed to make the logical “1” state.

Diatomic molecules: For the diatomic molecule example, consider superpositions of all four corners of two antipodal tetrahedra for the two respective logical states.

blog_tet

The logical “0” state for the quantum code is now itself a quantum superposition of orientations of our diatomic molecule corresponding to the four black points on the sphere to the left (the sphere to the right is a top-down view). Similarly, the logical “1” quantum state is a superposition of all orientations corresponding to the white points.

Each orientation (black or white point) present in our logical states rotates under fluctuations in the position of the molecule. However, the entire set of orientations for say logical “0” — the tetrahedron — rotates rigidly under such rotations. Therefore, the region from which we can successfully recover after rotations is fully determined by the Voronoi tile of any one of the corners of the tetrahedron. (Above, we plot the tile for the point at the north pole.) This cell is clearly smaller than the one for classical north-south-pole encoding we used before. However, the tetrahedral code now provides some protection against phase errors — the other type of noise that we need to worry about if we are to protect quantum information. This is an example of the trade-off we must make in order to protect against both types of noise; a licensed quantum mechanic has to live with such trade-offs every day.

Oscillators: Another example of a quantum encoding is the GKP encoding in the phase space of the harmonic oscillator. Here, we have at our disposal the entire two-dimensional plane indexing different values of position and momentum. In this case, we can use a checkerboard approach, superimposing all points at the centers of the black squares for the logical “0” state, and similarly all points at the centers of the white squares for the logical “1”. The region depicting correctable momentum and position shifts is then the Voronoi cell of the point at the origin: if a shift takes our central black point to somewhere inside the blue square, we know (most likely) where that point came from! In solid state circles, the blue square is none other than the primitive or unit cell of the lattice consisting of points making up both of the logical states.

Asymmetric molecules (a.k.a. rigid rotors): Now let’s briefly return to molecules. Above, we considered diatomic molecules that had a symmetry axis, i.e., that were left unchanged under rotations about the axis that connects the two atoms. There are of course more general molecules out there, including ones that are completely asymmetric under any possible (proper) 3D rotation (see figure below for an example).

mol-f0 - blog

BONUS: There is a subtle mistake relating to the geometry of the rotation group in the labeling of this figure. Let me know if you can find it in the comments!

All of the orientations of the asymmetric molecule, and more generally a rigid body, can no longer be parameterized by the sphere. They can be parameterized by the 3D rotation group \mathsf{SO}(3): each orientation of an asymmetric molecule is labeled by the 3D rotation necessary to obtain said orientation from a reference state. Such rotations, and in turn the orientations themselves, are parameterized by an axis \mathbf{v} (around which to rotate) and an angle \omega (by which one rotates). The rotation group \mathsf{SO}(3) luckily can still be viewed by humans on a sheet of paper. Namely, \mathsf{SO}(3) can be thought of as a ball of radius \pi with opposite points identified. The direction of each vector \omega\mathbf{v} lying inside the ball corresponds to the axis of rotation, while the length corresponds to the angle. This may take some time to digest, but it’s not crucial to the story.

So far we’ve looked at codes defined on cubes of bits, spheres, and phase-space lattices. Turns out that even \mathsf{SO}(3) can house similar encodings! In other words, \mathsf{SO}(3) can also be cut up into different Voronoi tiles, which in turn can be staggered to create logical “0” and “1” states consisting of different molecular orientations. There are many ways to pick such states, corresponding to various subgroups of \mathsf{SO}(3). Below, we sketch two sets of black/white points, along with the Voronoi tile corresponding to the rotations that are corrected by each encoding.

Voronoi tiles of the black point at the center of the ball representing the 3D rotation group, for two different molecular codes. This and the Voronoi cells corresponding to the other points tile together to make up the entire ball. 3D printing all of these tiles would make for cool puzzles!

In closing…

Achieving supremacy was a big first step towards making quantum computing a practical and universal tool. However, the largest obstacles still await, namely handling superposition-poisoning noise coming from the ever-curious environment. As quantum technologies advance, other possible routes for error correction are by encoding qubits in harmonic oscillators and molecules, alongside the “traditional” approach of using arrays of physical qubits. Oscillator and molecular qubits possess their own mechanisms for error correction, and could prove useful (granted that the large high-energy space required for the procedures to work can be accessed and controlled). Even though molecular qubits are not yet mature enough to be used in quantum computers, we have at least outlined a blueprint for how some of the required pieces can be built. We are by no means done however: besides an engineering barrier, we need to further develop how to run robust computations on these exotic spaces.

Author’s note: I’d like to acknowledge Jose Gonzalez for helping me immensely with the writing of this post, as well as for drawing the comic panels in the previous post. The figures above were made possible by Mathematica 12.

On the Coattails of Quantum Supremacy

Most readers have by now heard that Google has “achieved” quantum “supremacy”. Notice the only word not in quotes is “quantum”, because unlike previous proposals that have also made some waves, quantumness is mostly not under review here. (Well, neither really are the other two words, but that story has already been covered quite eloquently by John, Scott, and Toby.) The Google team has managed to engineer a device that, although noisy, can do the right thing a large-enough fraction of the time for people to be able to “quantify its quantumness”.

However, the Google device, while less so than previous incarnations, is still noisy. Future devices like it will continue to be noisy. Noise is what makes quantum computers so darn difficult to build; it is what destroys the fragile quantum superpositions that we are trying so hard to protect (remember, unlike a classical computer, we are not protecting things we actually observe, but their superposition).

Protecting quantum information is like taking your home-schooled date (who has lived their entire life in a bunker) to the prom for the first time. It is a fun and necessary part of a healthy relationship to spend time in public, but the price you pay is the possibility that your date will hit it off with someone else. This will leave you abandoned, dancing alone to Taylor Swift’s “You Belong With Me” while crying into your (spiked?) punch.

When the environment corrupts your quantum date.

The high school sweetheart/would-be dance partner in the above provocative example is the quantum superposition — the resource we need for a working quantum computer. You want it all to yourself, but your adversary — the environment — wants it too. No matter how much you try to protect it, you’ll have to observe it eventually (after all, you want to know the answer to your computation). And when you do (take your date out onto the crowded dance floor), you run the risk of the environment collapsing the information before you do, leaving you with nothing.

Protecting quantum information is also like (modern!) medicine. The fussy patient is the quantum information, stored in delicate superposition, while quantumists are the doctors aiming to prevent the patient from getting sick (or “corrupted”). If our patient incurs say “quasiparticle poisoning”, we first diagnose the patient’s syndromes, and, based on this diagnosis, apply procedures like “lattice surgery” and “state injection” to help our patient successfully recover.

The medical analogy to QEC, noticed first by Daniel Litinski. All terms are actually used in papers. Cartoon by Jose Gonzalez.

Error correction with qubits

Error correction sounds hard, and it should! Not to fear: plenty of very smart people have thought hard about this problem, and have come up with a plan — to redundantly encode the quantum superposition in a way that allows protection from errors caused by noise. Such quantum error-correction is an expansion of the techniques we currently use to protect classical bits in your phone and computer, but now the aim is to protect, not the definitive bit states 0 or 1, but their quantum superpositions. Things are even harder now, as the protection machinery has to do its magic without disturbing the superposition itself (after all, we want our quantum calculation to run to its conclusion and hack your bank).

For example, consider a qubit — the fundamental quantum unit represented by two shelves (which, e.g., could be the ground and excited states of an atom, the absence or presence of a photon in a box, or the zeroth and first quanta of a really cold LC circuit). This qubit can be in any quantum superposition of the two shelves, described by 2 probability amplitudes, one corresponding to each shelf. Observing this qubit will collapse its state onto either one of the shelves, changing the values of the 2 amplitudes. Since the resource we use for our computation is precisely this superposition, we definitely do not want to observe this qubit during our computation. However, we are not the only ones looking: the environment (other people at the prom: the trapping potential of our atom, the jiggling atoms of our metal box, nearby circuit elements) is also observing this system, thereby potentially manipulating the stored quantum state without our knowledge and ruining our computation.

Now consider 50 such qubits. Such a space allows for a superposition with 2^{50} different amplitudes (instead of just 2^1 for the case of a single qubit). We are once again plagued by noise coming from the environment. But what if we now, less ambitiously, want to store only one qubit’s worth of information in this 50-qubit system? Now there is room to play with! A clever choice of how to do this (a.k.a. the encoding) helps protect from the bad environment. 

The entire prospect of building a bona-fide quantum computer rests on this extra overhead or quantum redundancy of using a larger system to encode a smaller one. It sounds daunting at first: if we need 50 physical qubits for each robust logical qubit, then we’d need “I-love-you-3000” physical qubits for 60 logical ones? Yes, this is a fact we all have to live with. But granted we can scale up our devices to that many qubits, there is no fundamental obstacle that prevents us from then using error correction to make next-level computers.

To what extent do we need to protect our quantum superposition from the environment? It would be too ambitious to protect it from a meteor shower. Or a power outage (although that would be quite useful here in California). So what then can we protect against?

Our working answer is local noise — noise that affects only a few qubits that are located near each other in the device. We can never be truly certain if this type of noise is all that our quantum computers will encounter. However, our belief that this is the noise we should focus on is grounded in solid physical principles — that nature respects locality, that affecting things far away from you is harder than making an impact nearby. (So far Google has not reported otherwise, although much more work needs to be done to verify this intuition.)

The harmonic oscillator

In what other ways can we embed our two-shelf qubit into a larger space? Instead of scaling up using many physical qubits, we can utilize a fact that we have so far swept under the rug: in any physical system, our two shelves are already part of an entire bookcase! Atoms have more than one excited state, there can be more than one photon in a box, and there can be more than one quantum in a cold LC circuit. Why don’t we use some of that higher-energy space for our redundant encoding?

The noise in our bookcase will certainly be different, since the structure of the space, and therefore the notion of locality, is different. How to cope with this? The good news is that such a space — the space of the harmonic oscillator — also has a(t least one) natural notion of locality!

Whatever the incarnation, the oscillator has associated with it a position and momentum (different jargon for these quantities may be used, depending on the context, but you can just think of a child on a swing, just quantized). Anyone who knows the joke about Heisenberg getting pulled over, will know that these two quantities cannot be set simultaneously.

Cartoon by Jose Gonzalez.

Nevertheless, local errors can be thought of as small shifts in position or momentum, while nonlocal errors are ones that suddenly shift our bewildered swinging quantized child from one side of the swing to the other.

Armed with a local noise model, we can extend our know-how from multi-qubit land to the oscillator. One of the first such oscillator codes were developed by Gottesman, Kitaev, and Preskill (GKP). Proposed in 2001, GKP encodings posed a difficult engineering challenge: some believed that GKP states could never be realized, that they “did not exist”. In the past few years however, GKP states have been realized nearly simultaneously in two experimental platforms. (Food for thought for the non-believers!)

Parallel to GKP codes, another promising oscillator encoding using cat states is also being developed. This encoding has historically been far easier to create experimentally. It is so far the only experimental procedure achieving the break-even point, at which the actively protected logical information has the same lifetime as the system’s best unprotected degree of freedom.

Can we mix and match all of these different systems? Why yes! While Google is currently trying to build the surface code out of qubits, using oscillators (instead of qubits) for the surface code and encoding said oscillators either in GKP (see related IBM post) [1,2,3] or cat [4,5] codes is something people are seriously considering. There is even more overhead, but the extra information one gets from the correction procedure might make for a more fault-tolerant machine. With all of these different options being explored, it’s an exciting time to be into quantum!

Molecules?

It turns out there are still other systems we can consider, although because they are sufficiently more “out there” at the moment, I should first say “bear with me!” as I explain. Forget about atoms, photons in a box, and really cold LC circuits. Instead, consider a rigid 3-dimensional object whose center of mass has been pinned in such a way that the object can rotate any way it wants. Now, “quantize” it! In other words, consider the possibility of having quantum superpositions of different orientations of this object. Just like superpositions of a dead and alive cat, of a photon and no photon, the object can be in quantum superposition of oriented up, sideways, and down, for example. Superpositions of all possible orientations then make up our new configuration space (read: playground), and we are lucky that it too inherits many of the properties we know and love from its multi-qubit and oscillator cousins.

Examples of rigid bodies include airplanes (which can roll, pitch and yaw, even while “fixed” on a particular trajectory vector) and robot arms (which can rotate about multiple joints). Given that we’re not quantizing those (yet?), what rigid body should we have in mind as a serious candidate? Well, in parallel to the impressive engineering successes of the multi-qubit and oscillator paradigms, physicists and chemists have made substantial progress in trapping and cooling molecules. If a trapped molecule is cold enough, it’s vibrational and electronic states can be neglected, and its rotational states form exactly the rigid body we are interested in. Such rotational states, as far as we can tell, are not in the realm of Avengers-style science fiction.

Superpositions of molecular orientations don’t violate the Deutsch proposition.

The idea to use molecules for quantum computing dates all the way back to a 2001 paper by Dave DeMille, but in a recent paper by Jacob Covey, John Preskill, and myself, we propose a framework of how to utilize the large space of molecular orientations to protect against (you guessed it!) a type of local noise. In the second part of the story, called “Quantum Error Correction with Molecules“, I will cover a particular concept that is not only useful for a proper error-correcting code (classical and quantum), but also one that is quite fun to try and understand. The concept is based on a certain kind of tiling, called Voronoi tiles or Thiessen polygons, which can be used to tile anything from your bathroom floor to the space of molecular orientations. Stay tuned!

John Preskill and the dawn of the entanglement frontier

Editor’s Note: John Preskill’s recent election to the National Academy of Sciences generated a lot of enthusiasm among his colleagues and students. In an earlier post today, famed Stanford theoretical physicist, Leonard Susskind, paid tribute to John’s early contributions to physics ranging from magnetic monopoles to the quantum mechanics of black holes. In this post, Daniel Gottesman, a faculty member at the Perimeter Institute, takes us back to the formative years of the Institute for Quantum Information at Caltech, the precursor to IQIM and a world-renowned incubator for quantum information and quantum computation research. Though John shies away from the spotlight, we, at IQIM, believe that the integrity of his character and his role as a mentor and catalyst for science are worthy of attention and set a good example for current and future generations of theoretical physicists.

Preskill's legacy may well be the incredible number of preeminent research scientists in quantum physics he has mentored throughout his extraordinary career.

Preskill’s legacy may well be the incredible number of preeminent research scientists in quantum physics he has mentored throughout his extraordinary career.

When someone wins a big award, it has become traditional on this blog for John Preskill to write something about them. The system breaks down, though, when John is the one winning the award. Therefore I’ve been brought in as a pinch hitter (or should it be pinch lionizer?).

The award in this case is that John has been elected to the National Academy of Sciences, along with Charlie Kane and a number of other people that don’t work on quantum information. Lenny Susskind has already written about John’s work on other topics; I will focus on quantum information.

On the research side of quantum information, John is probably best known for his work on fault-tolerant quantum computation, particularly topological fault tolerance. John jumped into the field of quantum computation in 1994 in the wake of Shor’s algorithm, and brought me and some of his other grad students with him. It was obvious from the start that error correction was an important theoretical challenge (emphasized, for instance, by Unruh), so that was one of the things we looked at. We couldn’t figure out how to do it, but some other people did. John and I embarked on a long drawn-out project to get good bounds on the threshold error rate. If you can build a quantum computer with an error rate below the threshold value, you can do arbitrarily large quantum computations. If not, then errors will eventually overwhelm you. Early versions of my project with John suggested that the threshold should be about 10^{-4}, and the number began floating around (somewhat embarrassingly) as the definitive word on the threshold value. Our attempts to bound the higher-order terms in the computation became rather grotesque, and the project proceeded very slowly until a new approach and the recruitment of Panos Aliferis finally let us finish a paper with a rigorous proof of a slightly lower threshold value.

Meanwhile, John had also been working on topological quantum computation. John has already written about his excitement when Kitaev visited Caltech and talked about the toric code. The two of them, plus Eric Dennis and Andrew Landahl, studied the application of this code for fault tolerance. If you look at the citations of this paper over time, it looks rather … exponential. For a while, topological things were too exotic for most quantum computer people, but over time, the virtues of surface codes have become obvious (apparently high threshold, convenient for two-dimensional architectures). It’s become one of the hot topics in recent years and there are no signs of flagging interest in the community.

John has also made some important contributions to security proofs for quantum key distribution, known to the cognoscenti just by its initials. QKD allows two people (almost invariably named Alice and Bob) to establish a secret key by sending qubits over an insecure channel. If the eavesdropper Eve tries to live up to her name, her measurements of the qubits being transmitted will cause errors revealing her presence. If Alice and Bob don’t detect the presence of Eve, they conclude that she is not listening in (or at any rate hasn’t learned much about the secret key) and therefore they can be confident of security when they later use the secret key to encrypt a secret message. With Peter Shor, John gave a security proof of the best-known QKD protocol, known as the “Shor-Preskill” proof. Sometimes we scientists lack originality in naming. It was not the first proof of security, but earlier ones were rather complicated. The Shor-Preskill proof was conceptually much clearer and made a beautiful connection between the properties of quantum error-correcting codes and QKD. The techniques introduced in their paper got adopted into much later work on quantum cryptography.

Collaborating with John is always an interesting experience. Sometimes we’ll discuss some idea or some topic and it will be clear that John does not understand the idea clearly or knows little about the topic. Then, a few days later we discuss the same subject again and John is an expert, or at least he knows a lot more than me. I guess this ability to master
topics quickly is why he was always able to answer Steve Flammia’s random questions after lunch. And then when it comes time to write the paper … John will do it. It’s not just that he will volunteer to write the first draft — he keeps control of the whole paper and generally won’t let you edit the source, although of course he will incorporate your comments. I think this habit started because of incompatibilities between the TeX editor he was using and any other program, but he maintains it (I believe) to make sure that the paper meets his high standards of presentation quality.

This also explains why John has been so successful as an expositor. His
lecture notes for the quantum computation class at Caltech are well-known. Despite being incomplete and not available on Amazon, they are probably almost as widely read as the standard textbook by Nielsen and Chuang.

Before IQIM, there was IQI, and before that was QUIC.

Before IQIM, there was IQI, and before that was QUIC.

He apparently is also good at writing grants. Under his leadership and Jeff Kimble’s, Caltech has become one of the top places for quantum computation. In my last year of graduate school, John and Jeff, along with Steve Koonin, secured the QUIC grant, and all of a sudden Caltech had money for quantum computation. I got a research assistantship and could write my thesis without having to worry about TAing. Postdocs started to come — first Chris Fuchs, then a long stream of illustrious others. The QUIC grant grew into IQI, and that eventually sprouted an M and drew in even more people. When I was a student, John’s group was located in Lauritsen with the particle theory group. We had maybe three grad student offices (and not all the students were working on quantum information), plus John’s office. As the Caltech quantum effort grew, IQI acquired territory in another building, then another, and then moved into a good chunk of the new Annenberg building. Without John’s efforts, the quantum computing program at Caltech would certainly be much smaller and maybe completely lacking a theory side. It’s also unlikely this blog would exist.

The National Academy has now elected John a member, probably more for his research than his twitter account (@preskill), though I suppose you never know. Anyway, congratulations, John!

-D. Gottesman