In the previous blog post (titled, “On the Coattails of Quantum Supremacy“) we started with Google and ended up with molecules! I also mentioned a recent paper by John Preskill, Jake Covey, and myself (see also this videoed talk) where we assume that, somewhere in the (near?) future, experimentalists will be able to construct quantum superpositions of several orientations of molecules or other rigid bodies. Next, I’d like to cover a few more details on how to construct error-correcting codes for anything from classical bits in your phone to those future quantum computers, molecular or otherwise.
Classical error correction: the basics
Error correction is concerned with the design of an encoding that allows for protection against noise. Let’s say we want to protect one classical bit, which is in either “0” or “1”. If the bit is say in “0”, and the environment (say, the strong magnetic field from a magnet you forgot was laying next to your hard drive) flipped it to “1” without our knowledge, an error would result (e.g., making your phone think you swiped right!)
Now let’s encode our single logical bit into three physical bits, whose possible states are represented by the eight corners of the cube below. Let’s encode the logical bit as “0” —> 000 and “1” —> 111, corresponding to the corners of the cube marked by the black and white ball, respectively. For our (local) noise model, we assume that flips of only one of the three physical bits are more likely to occur than flips of two or three at the same time.
Error correction is, like many Hollywood movies, an origin story. If, say, the first bit flips in our above code, the 000 state is mapped to 100, and 111 is mapped to 011. Since we have assumed that the most likely error is a flip of one of the bits, we know upon observing that 100 must have come from the clean 000, and 011 from 111. Thus, in either case of the logical bit being “0” or “1”, we can recover the information by simply observing which state the majority of the bits are in. The same things happen when the second or third bits flip. In all three cases, the logical “0” state is mapped to one of its three neighboring points (above, in blue) while the logical “1” is mapped to its own three points, which, crucially, are distinct from the neighbors of “0”. The set of points that are closer to 000 than to 111 is called a Voronoi tile.
Now, let’s adapt these ideas to molecules. Consider the rotational states of a dumb-bell molecule consisting of two different atoms. (Let’s assume that we have frozen this molecule to the point that the vibration of the inter-atomic bond is limited, essentially creating a fixed distance between the two atoms.) This molecule can orient itself in any direction, and each such orientation can be represented as a point on the surface of a sphere. Now let us encode a classical bit using the north and south poles of this sphere (represented in the picture below as a black and a white ball, respectively). The north pole of the sphere corresponds to the molecule being parallel to the z-axis, while the south pole corresponds to the molecule being anti-parallel.
This time, the noise consists of small shifts in the molecule’s orientation. Clearly, if such shifts are small, the molecule just wiggles a bit around the z-axis. Such wiggles still allow us to infer that the molecule is (mostly) parallel and anti-parallel to the axis, as long as they do not rotate the molecule all the way past the equator. Upon such correctable rotations, the logical “0” state — the north pole — is mapped to a point in the northern hemisphere, while logical “1” — the south pole — is mapped to a point in the southern hemisphere. The northern hemisphere forms a Voronoi tile of the logical “0” state (blue in the picture), which, along with the corresponding tile of the logical “1” state (the southern hemisphere), tiles the entire sphere.
Quantum error correction
To upgrade these ideas to the quantum realm, recall that this time we have to protect superpositions. This means that, in addition to shifting our quantum logical state to other states as before, noise can also affect the terms in the superposition itself. Namely, if, say, the superposition is equal — with an amplitude of in “0” and in “1” — noise can change the relative sign of the superposition and map one of the amplitudes to . We didn’t have to worry about such sign errors before, because our classical information would always be the definite state of “0” or “1”. Now, there are two effects of noise to worry about, so our task has become twice as hard!
Not to worry though. In order to protect against both sources of noise, all we need to do is effectively stagger the above constructions. Now we will need to design a logical “0” state which is itself a superposition of different points, with each point separated from all of the points that are superimposed to make the logical “1” state.
Diatomic molecules: For the diatomic molecule example, consider superpositions of all four corners of two antipodal tetrahedra for the two respective logical states.
Each orientation (black or white point) present in our logical states rotates under fluctuations in the position of the molecule. However, the entire set of orientations for say logical “0” — the tetrahedron — rotates rigidly under such rotations. Therefore, the region from which we can successfully recover after rotations is fully determined by the Voronoi tile of any one of the corners of the tetrahedron. (Above, we plot the tile for the point at the north pole.) This cell is clearly smaller than the one for classical north-south-pole encoding we used before. However, the tetrahedral code now provides some protection against phase errors — the other type of noise that we need to worry about if we are to protect quantum information. This is an example of the trade-off we must make in order to protect against both types of noise; a licensed quantum mechanic has to live with such trade-offs every day.
Oscillators: Another example of a quantum encoding is the GKP encoding in the phase space of the harmonic oscillator. Here, we have at our disposal the entire two-dimensional plane indexing different values of position and momentum. In this case, we can use a checkerboard approach, superimposing all points at the centers of the black squares for the logical “0” state, and similarly all points at the centers of the white squares for the logical “1”. The region depicting correctable momentum and position shifts is then the Voronoi cell of the point at the origin: if a shift takes our central black point to somewhere inside the blue square, we know (most likely) where that point came from! In solid state circles, the blue square is none other than the primitive or unit cell of the lattice consisting of points making up both of the logical states.
Asymmetric molecules (a.k.a. rigid rotors): Now let’s briefly return to molecules. Above, we considered diatomic molecules that had a symmetry axis, i.e., that were left unchanged under rotations about the axis that connects the two atoms. There are of course more general molecules out there, including ones that are completely asymmetric under any possible (proper) 3D rotation (see figure below for an example).
All of the orientations of the asymmetric molecule, and more generally a rigid body, can no longer be parameterized by the sphere. They can be parameterized by the 3D rotation group : each orientation of an asymmetric molecule is labeled by the 3D rotation necessary to obtain said orientation from a reference state. Such rotations, and in turn the orientations themselves, are parameterized by an axis (around which to rotate) and an angle (by which one rotates). The rotation group luckily can still be viewed by humans on a sheet of paper. Namely, can be thought of as a ball of radius with opposite points identified. The direction of each vector lying inside the ball corresponds to the axis of rotation, while the length corresponds to the angle. This may take some time to digest, but it’s not crucial to the story.
So far we’ve looked at codes defined on cubes of bits, spheres, and phase-space lattices. Turns out that even can house similar encodings! In other words, can also be cut up into different Voronoi tiles, which in turn can be staggered to create logical “0” and “1” states consisting of different molecular orientations. There are many ways to pick such states, corresponding to various subgroups of . Below, we sketch two sets of black/white points, along with the Voronoi tile corresponding to the rotations that are corrected by each encoding.
In closing…
Achieving supremacy was a big first step towards making quantum computing a practical and universal tool. However, the largest obstacles still await, namely handling superposition-poisoning noise coming from the ever-curious environment. As quantum technologies advance, other possible routes for error correction are by encoding qubits in harmonic oscillators and molecules, alongside the “traditional” approach of using arrays of physical qubits. Oscillator and molecular qubits possess their own mechanisms for error correction, and could prove useful (granted that the large high-energy space required for the procedures to work can be accessed and controlled). Even though molecular qubits are not yet mature enough to be used in quantum computers, we have at least outlined a blueprint for how some of the required pieces can be built. We are by no means done however: besides an engineering barrier, we need to further develop how to run robust computations on these exotic spaces.
Author’s note: I’d like to acknowledge Jose Gonzalez for helping me immensely with the writing of this post, as well as for drawing the comic panels in the previous post. The figures above were made possible by Mathematica 12.