Building the future

At the start of the academic year, my high school Physics students want an easy lab with simple, clear-cut data.  They are satisfied with a clear-cut conclusion. Open-ended labs, especially those without cookbook procedures are at first daunting and intimidating.  Having to take time to troubleshoot a problem is a painful process for them, as it can be for many.  As the year progresses, they seem to grow more comfortable with their own exploration of Physics trends.

IMG_20160728_092229

Another happy day in Sloan

There is no set manual for real scientific research, for uncharted territory. Exciting, new research has no “right” answer upon which to compare your data. And building your own, unique experimental set-up inherently requires much time to minimize new issues. It is interesting to me that when there is less guidance based on previous research, there is a larger possibility for great, new discoveries.

This summer I again retreated from the summer heat, plunging into the Caltech sub basements to further my understanding of the freshest research, efficient laboratory techniques, and culture in Physics research. The quiet hum of the air conditioner and lights marked an eerie contrast to the non-stop, bustling life of the classroom. It was an even more stark contrast to my 16-month-old daughter’s incessant joyful and curious exploration of the world.

IMG_20160623_101138

The SEM Chamber

My first project this summer focused on helping to get the SEM (Scanning Electron Microscope) up and running. Once the SEM is functional the first samples it will scan are solar cells comprised of graphene nanotubes. If grand scaled and mass produced, methane may be one source of the necessary carbon for graphene. What if we contained methane gases that are already problematically being released into our greenhouse-gas-ridden atmosphere and subsequently used them to make graphene solar cells? What a win-win solution to help the daunting problem of global climate change?

Helping to set up the SEM involved a variety of interesting tasks: I found the working distance from the SEM gun to the sample holder that would soon be loaded into the chamber. I researched Pirani gauge parts and later rubber pads to help with damping. I helped to install copper ConFlat flanges for making low pressure seals. We used sonification to clean parts used at the SEM lab. We found and installed a nitrogen (N2) line to flush out moisture in the SEM chamber. There were numerous rounds of baking out moisture that may have collected in the chamber in the years since this SEM was last in use.

IMG_20160705_102914

A tube scanner head

During “down time”, such as when the SEM chamber was being pumped down to less than one-part-per-billion pressure with multiple vacuum pumps, we directed our attention to two other projects. The first was making parts for the tube scanner head. Due to the possibility of burning out scanner heads in the alignment process when we first turn on the SEM gun, we needed to be prepared with alternative STM parts. This involved drilling, epoxying, baking, sanding, and soldering tiny pieces.  A diminutive coaxial cable with multiple insulating layers was stripped apart so that we could properly connect the gold conducting wire from within.

During the last week I focused my efforts by returning to an interferometer set up in the sub-basement of Sloan. Last summer, part of my time was spent learning about and setting up an interferometer system in order to measure the shift of a piezoelectric stack when particular voltages were applied. Once calibrated, these piezos will be used to control the motion of the tips in our lab’s STM (Scanning Tunneling Microscope). This summer was different because we had additional equipment from Thorlabs in order to move further along with the project.

Piezo Interferometer Pic 2

Overhead view of the interferometer set-up.

On the day of arrival of the much-needed parts, I felt like a child at Christmas. Ready, set, go. Racing against the impending end of the internship and start of the upcoming academic year, I worked to assemble our equipment.  

IMG_20160729_104852

LASER, function generator, amplifier.

This same procedure was completed roughly a decade ago by graduate students in our lab. Now, though, the remaining calibrated piezos have been used. In order to continue doing important STM measurements, new piezo stacks need to be calibrated.

A ray of red, coherent light from our LASER is directed to a beamsplitter. One arm of light is directed to a mirror and reflected back to the beamsplitter. Another arm of light is directed to a mirror fixed upon the piezoelectric stack. Depending on the applied voltage and particular piezo stacks, the orientation and magnitude of the shear varies. A signal generator and amplifier are connected to the opposite end of the piezoelectric stacks to carefully control the voltage signal applied to the piezos.  Once the beams are recombined at the beamsplitter, they should interfere.  An interference pattern should be detected on the oscilloscope.

IMG_20160729_104837

Confirmation that my oscilloscope was working properly

At first it was plain fun setting up the various parts, like fitting puzzle pieces with the various optics devices. The difficulty came later in troubleshooting. I had little issue with adjusting the set-up so that both beams from the LASER landed directly onto the photodetector. Getting a beautiful interference pattern was another case. Making sense of the output signal from the photodetector on the oscilloscope was also a process. Finding joy and benefit in the learning process as opposed to frustration in a trying time is an important lesson in life.  Of course it is inevitable that there will be difficulties in life. Can we grow from the learning opportunity as opposed to complaining about the struggle?

IMG_20160728_161113

What I at first thought was the interference pattern I had been hoping for… Not so fast.

The irony is that just like my students, I wanted an easy, beautiful interference pattern that could be interpreted on our oscilloscope. I had the opportunity to learn through trial and error and from additional research on interferometers. I look forward to hearing from the lab group about the progress that is made on this project during the academic year while I am in the classroom. I am grateful to IQIM and the Yeh Lab Group for allowing me to continue participating in this exciting program.

Your thoughts here.