May I have this dance?

This July, I came upon a museum called the Haus der Musik in one of Vienna’s former palaces. The museum contains a room dedicated to Johann Strauss II, king of the waltz. The room, dimly lit, resembles a twilit gazebo. I could almost believe that a hidden orchestra was playing the rendition of “The Blue Danube” that filled the room. Glass cases displayed dance cards and accessories that dancers would bring to a nineteenth-century ball.

A ball. Who hasn’t read about one in a novel or seen one in a film? A throng of youngsters and their chaperones, rustling in silk. The glint of candles, the vigor of movement, the thrill of interaction, the anxiety of establishing one’s place in society.

Victoria and Albert at a ball in the film The Young Victoria

Another throng gathered a short walk from the Haus der Musik this summer. The Vienna University of Technology hosted the conference Quantum Thermodynamics (QTD) in the heart of the city. Don’t tell the other annual conferences, but QTD is my favorite. It spotlights the breed of quantum thermodynamics that’s surged throughout the past decade—the breed saturated with quantum information theory. I began attending QTD as a PhD student, and the conference shifts from city to city from year to year. I reveled in returning in person for the first time since the pandemic began.

Yet this QTD felt different. First, instead of being a PhD student, I brought a PhD student of my own. Second, granted, I enjoyed catching up with colleagues-cum-friends as much as ever. I especially relished seeing the “classmates” who belonged to my academic generation. Yet we were now congratulating each other on having founded research groups, and we were commiserating about the workload of primary investigators. 

Third, I found myself a panelist in the annual discussion traditionally called “Quo vadis, quantum thermodynamics?” The panel presented bird’s-eye views on quantum thermodynamics, analyzing trends and opining on the direction our field was taking (or should take).1 Fourth, at the end of the conference, almost the last sentence spoken into any microphone was “See you in Maryland next year.” Colleagues and I will host QTD 2024.


One of my dearest quantum-thermodynamic “classmates,” Nelly Ng, participated in the panel discussion, too. We met as students (see these two blog posts), and she’s now an assistant professor at Nanyang Technological University. Photo credit: Jakub Czartowski.

The day after QTD ended, I boarded an Austrian Airlines flight. Waltzes composed by Strauss played over the loudspeakers. They flipped a switch in my mind: I’d come of age, I thought. I’d attended QTD 2017 as a debutante, presenting my first invited talk at the conference series. I’d danced through QTD 2018 in Santa Barbara, as well as the online iterations held during the pandemic. I’d reveled in the vigor of scientific argumentation, the thrill of learning, the glint of slides shining on projector screens (not really). Now, I was beginning to shoulder responsibilities like a ballgown-wearing chaperone.

As I came of age, so did QTD. The conference series budded around the time I started grad school and embarked upon quantum-thermodynamics research. In 2017, approximately 80 participants attended QTD. This year, 250 people registered to attend in person, and others attended online. Two hundred fifty! Quantum thermodynamics scarcely existed as a field of research fifteen years ago.

I’ve heard that organizers of another annual conference, Quantum Information Processing (QIP), reacted similarly to a 250-person registration list some years ago. Aram Harrow, a professor and quantum information theorist at MIT, has shared stories about co-organizing the first QIPs. As a PhD student, he’d sat in his advisor’s office, taking notes, while the local quantum-information theorists chose submissions to highlight. Nowadays, a small army of reviewers and subreviewers processes the hordes of submissions. And, from what I heard about this year’s attendance, you almost might as well navigate a Disney theme park on a holiday as the QIP crowd. 

Will QTD continue to grow like QIP? Would such growth strengthen or fracture the community? Perhaps we’ll discuss those questions at a “Quo vadis?” session in Maryland next year. But I, at least, hope to continue always to grow—and to dance.2


Ludwig Boltzmann, a granddaddy of thermodynamics, worked in Vienna. I’ve waited for years to make a pilgrimage.

1My opinion: Now that quantum thermodynamics has showered us with fundamental insights, we should apply it in practical applications. How? Collaborators and I suggest one path here.

2I confess to having danced the waltz step (gleaned during my 14 years of ballet training) around that Strauss room in the Haus der Musik. I didn’t waltz around the conference auditorium, though.

The Book of Mark, Chapter 2

Late in the summer of 2021, I visited a physics paradise in a physical paradise: the Kavli Institute for Theoretical Physics (KITP). The KITP sits at the edge of the University of California, Santa Barbara like a bougainvillea bush at the edge of a yard. I was eating lunch outside the KITP one afternoon, across the street from the beach. PhD student Arman Babakhani, whom a colleague had just introduced me to, had joined me.

The KITP’s Kohn Hall

What physics was I working on nowadays? Arman wanted to know.

Thermodynamic exchanges. 

The world consists of physical systems exchanging quantities with other systems. When a rose blooms outside the Santa Barbara mission, it exchanges pollen with the surrounding air. The total amount of pollen across the rose-and-air whole remains constant, so we call the amount a conserved quantity. Quantum physicists usually analyze conservation of particles, energy, and magnetization. But quantum systems can conserve quantities that participate in uncertainty relations. Such quantities are called incompatible, because you can’t measure them simultaneously. The x-, y-, and z-components of a qubit’s spin are incompatible.

The Santa Barbara mission…
…and its roses

Exchanging and conserving incompatible quantities, systems can violate thermodynamic expectations. If one system is much larger than the other, we expect the smaller system to thermalize; yet incompatibility invalidates derivations of the thermal state’s form. Incompatibility reduces the thermodynamic entropy produced by exchanges. And incompatibility can raise the average amount entanglement in the pair of systems—the total system.

If the total system conserves incompatible quantities, what happens to the eigenstate thermalization hypothesis (ETH)? Last month’s blog post overviewed the ETH, a framework for understanding how quantum many-particle systems thermalize internally. That post labeled Mark Srednicki, a professor at the KITP, a high priest of the ETH. I want, I told Arman, to ask Mark what happens when you combine the ETH with incompatible conserved quantities.

I’ll do it, Arman said.

Soon after, I found myself in the fishbowl. High up in the KITP, a room filled with cushy seats overlooks the ocean. The circular windows lend the room its nickname. Arrayed on the armchairs and couches were Mark, Arman, Mark’s PhD student Fernando Iniguez, and Mark’s recent PhD student Chaitanya Murthy. The conversation went like this:

Mark was frustrated about not being able to answer the question. I was delighted to have stumped him. Over the next several weeks, the group continued meeting, and we emailed out notes for everyone to criticize. I particulary enjoyed watching Mark and Chaitanya interact. They’d grown so intellectually close throughout Chaitanya’s PhD studies, they reminded me of an old married couple. One of them had to express only half an idea for the other to realize what he’d meant and to continue the thread. Neither had any qualms with challenging the other, yet they trusted each other’s judgment.1

In vintage KITP fashion, we’d nearly completed a project by the time Chaitanya and I left Santa Barbara. Physical Review Letters published our paper this year, and I’m as proud of it as a gardener of the first buds from her garden. Here’s what we found.

Southern California spoiled me for roses.

Incompatible conserved quantities conflict with the ETH and the ETH’s prediction of internal thermalization. Why? For three reasons. First, when inferring thermalization from the ETH, we assume that the Hamiltonian lacks degeneracies (that no energy equals any other). But incompatible conserved quantities force degeneracies on the Hamiltonian.2 

Second, when inferring from the ETH that the system thermalizes, we assume that the system begins in a microcanonical subspace. That’s an eigenspace shared by the conserved quantities (other than the Hamiltonian)—usually, an eigenspace of the total particle number or the total spin’s z-component. But, if incompatible, the conserved quantities share no eigenbasis, so they might not share eigenspaces, so microcanonical subspaces won’t exist in abundance.

Third, let’s focus on a system of N qubits. Say that the Hamiltonian conserves the total spin components S_x, S_y, and S_z. The Hamiltonian obeys the Wigner–Eckart theorem, which sounds more complicated than it is. Suppose that the qubits begin in a state | s_\alpha, \, m \rangle labeled by a spin quantum number s_\alpha and a magnetic spin quantum number m. Let a particle hit the qubits, acting on them with an operator \mathcal{O} . With what probability (amplitude) do the qubits end up with quantum numbers s_{\alpha'} and m'? The answer is \langle s_{\alpha'}, \, m' | \mathcal{O} | s_\alpha, \, m \rangle. The Wigner–Eckart theorem dictates this probability amplitude’s form. 

| s_\alpha, \, m \rangle and | s_{\alpha'}, \, m' \rangle are Hamiltonian eigenstates, thanks to the conservation law. The ETH is an ansatz for the form of \langle s_{\alpha'}, \, m' | \mathcal{O} | s_\alpha, \, m \rangle—of the elements of matrices that represent operators \mathcal{O} relative to the energy eigenbasis. The ETH butts heads with the Wigner–Eckart theorem, which also predicts the matrix element’s form.

The Wigner–Eckart theorem wins, being a theorem—a proved claim. The ETH is, as the H in the acronym relates, only a hypothesis.

If conserved quantities are incompatible, we have to kiss the ETH and its thermalization predictions goodbye. But must we set ourselves adrift entirely? Can we cling to no buoy from physics’s best toolkit for quantum many-body thermalization?

No, and yes, respectively. Our clan proposed a non-Abelian ETH for Hamiltonians that conserve incompatible quantities—or, equivalently, that have non-Abelian symmetries. The non-Abelian ETH depends on s_\alpha and on Clebsch–Gordan coefficients—conversion factors between total-spin eigenstates | s_\alpha, \, m \rangle and product states | s_1, \, m_1 \rangle \otimes | s_2, \, m_2 \rangle.

Using the non-Abelian ETH, we proved that many systems thermalize internally, despite conserving incompatible quantities. Yet the incompatibility complicates the proof enormously, extending it from half a page to several pages. Also, under certain conditions, incompatible quantities may alter thermalization. According to the conventional ETH, time-averaged expectation values \overline{ \langle \mathcal{O} \rangle }_t come to equal thermal expectation values \langle \mathcal{O} \rangle_{\rm th} to within O( N^{-1} ) corrections, as I explained last month. The correction can grow polynomially larger in the system size, to O( N^{-1/2} ), if conserved quantities are incompatible. Our conclusion holds under an assumption that we argue is physically reasonable.

So incompatible conserved quantities do alter the ETH, yet another thermodynamic expectation. Physicist Jae Dong Noh began checking the non-Abelian ETH numerically, and more testing is underway. And I’m looking forward to returning to the KITP this fall. Tales do say that paradise is a garden.

View through my office window at the KITP

1Not that married people always trust each other’s judgment.

2The reason is Schur’s lemma, a group-theoretic result. Appendix A of this paper explains the details.

Caltech’s Ginsburg Center

Editor’s note: On 10 August 2023, Caltech celebrated the groundbreaking for the Dr. Allen and Charlotte Ginsburg Center for Quantum Precision Measurement, which will open in 2025. At a lunch following the ceremony, John Preskill made these remarks.

Rendering of the facade of the Ginsburg Center

Hello everyone. I’m John Preskill, a professor of theoretical physics at Caltech, and I’m honored to have this opportunity to make some brief remarks on this exciting day.

In 2025, the Dr. Allen and Charlotte Ginsburg Center for Quantum Precision Measurement will open on the Caltech campus. That will certainly be a cause for celebration. Quite fittingly, in that same year, we’ll have something else to celebrate — the 100th anniversary of the formulation of quantum mechanics in 1925. In 1900, it had become clear that the physics of the 19th century had serious shortcomings that needed to be addressed, and for 25 years a great struggle unfolded to establish a firm foundation for the science of atoms, electrons, and light; the momentous achievements of 1925 brought that quest to a satisfying conclusion. No comparably revolutionary advance in fundamental science has occurred since then.

For 98 years now we’ve built on those achievements of 1925 to arrive at a comprehensive understanding of much of the physical world, from molecules to materials to atomic nuclei and exotic elementary particles, and much else besides. But a new revolution is in the offing. And the Ginsburg Center will arise at just the right time and at just the right place to drive that revolution forward.

Up until now, most of what we’ve learned about the quantum world has resulted from considering the behavior of individual particles. A single electron propagating as a wave through a crystal, unfazed by barriers that seem to stand in its way. Or a single photon, bouncing hundreds of times between mirrors positioned kilometers apart, dutifully tracking the response of those mirrors to gravitational waves from black holes that collided in a galaxy billions of light years away. Understanding that single-particle physics has enabled us to explore nature in unprecedented ways, and to build information technologies that have profoundly transformed our lives.

At the groundbreaking: Physics, Math and Astronomy Chair Fiona Harrison, California Assemblymember Chris Holden, President Tom Rosenbaum, Charlotte Ginsburg, Dr. Allen Ginsburg, Pasadena Mayor Victor Gordo, Provost Dave Tirrell.

What’s happening now is that we’re getting increasingly adept at instructing particles to move in coordinated ways that can’t be accurately described in terms of the behavior of one particle at a time. The particles, as we like to say, can become entangled. Many particles, like electrons or photons or atoms, when highly entangled, exhibit an extraordinary complexity that we can’t capture with the most powerful of today’s supercomputers, or with our current theories of how Nature works. That opens extraordinary opportunities for new discoveries and new applications.

We’re very proud of the role Caltech has played in setting the stage for the next quantum revolution. Richard Feynman envisioning quantum computers that far surpass the computers we have today. Kip Thorne proposing ways to use entangled photons to perform extraordinarily precise measurements. Jeff Kimble envisioning and executing ingenious methods for entangling atoms and photons. Jim Eisenstein creating and studying extraordinary phenomena in a soup of entangled electrons. And much more besides. But far greater things are yet to come.

How can we learn to understand and exploit the behavior of many entangled particles that work together? For that, we’ll need many scientists and engineers who work together. I joined the Caltech faculty in August 1983, almost exactly 40 years ago. These have been 40 good years, but I’m having more fun now than ever before. My training was in elementary particle physics. But as our ability to manipulate the quantum world advances, I find that I have more and more in common with my colleagues from different specialties. To fully realize my own potential as a researcher and a teacher, I need to stay in touch with atomic physics, condensed matter physics, materials science, chemistry, gravitational wave physics, computer science, electrical engineering, and much else. Even more important, that kind of interdisciplinary community is vital for broadening the vision of the students and postdocs in our research groups.

Nurturing that community — that’s what the Ginsburg Center is all about. That’s what will happen there every day. That sense of a shared mission, enhanced by colocation, will enable the Ginsburg Center to lead the way as quantum science and technology becomes increasingly central to Caltech’s research agenda in the years ahead, and increasingly important for science and engineering around the globe. And I just can’t wait for 2025.

Caltech is very fortunate to have generous and visionary donors like the Ginsburgs and the Sherman Fairchild Foundation to help us realize our quantum dreams.

Dr. Allen and Charlotte Ginsburg

Winners of the Quantum-Steampunk Short-Story Contest

During the past seven months, I’ve steamed across the Atlantic, sailed in a flying castle, teleported across the globe, and shuttled forward and backward in time. Literarily, not literally—the Quantum-Steampunk Short-Story Contest began welcoming submissions in October 2022. We challenged everybody aged 13 and over to write a steampunk narrative that involves a real or imagined quantum technology. One hundred sixty-seven entries arrived from 29 countries. Professional writers submitted stories, as did 13-year-olds. Tenured physics professors, librarians, English and math teachers, undergraduates, physicians, graduate students, and a United States Senate staffer entered. Thanks to their creativity, I now have a folder full of other worlds.

I’m over the moon (in a steam-powered ship) to announce the winners. David Wakeham received the $1,500 grand prize for the story The Creature of Ashen House. First runner-up Gerard McCaul won $1,000 for Doctor Up and Mister Down, and second runner-up Paulo Barreto won $500 for Eikonal. The People’s Choice Award ($500) went to Cristina Legarda for Pursuit, also nominated by two judges for a “Please Turn This into a Novel” award. Thanks to the 261 of you who voted in the People’s Choice competition!

In addition to traditional awards, we created four idiosyncratic ones, each entailing $250. We recognized Jeff Provine’s Stealing Buttons for its badass steampunk heroine; Matt King’s Three Imperiled Scientists for its wit and (relatedly) its portrayal of academia; Rick Searle’s The Recurrence Machine for its steampunk atmosphere; and Claudia Clarke’s Looking Forward, Looking Back, for its heart-capturing automaton. You can read all the finalist stories here.

Quantum-steampunk graphic by contest entrant Kayla Phan, who used YouChat Imagine

Sending our judges the finalists in March, I felt not only exhilaration (and relief, as whittling down 167 entries entails no little hand wringing), but also anxiety. Would the stories measure up? So I must have glowed when the first judge submitted his evaluations: Speculative-fiction author Ken Liu enthused, “The entries were so fun to read.” Similar reactions followed from across the panel, which featured experts in mathematics, philosophy, creative writing, experimental quantum physics, and history: “I had a very good time reading these stories,” another panelist wrote. “This was fun and some excellent spring break airplane (no dirigibles, I’m afraid) reading,” said another. Many thanks to our judges and short-listing committee for their input. University of Maryland undergraduates Hannah Cho and Jade Leschack led the team of students who narrowed down the candidates. I couldn’t resist treating the committee to a Victorian-inspired thank-you upon announcing the winners.

Thank-yous baked by Panera, not me

Although this year’s contest has ended, quantum-steampunk literature has just shipped out from its berth. Two contest entrants have posted their stories on their own online domains: You can read the mystery by Duke physics professor Ken Brown here and the adventure by quantum-algorithm designer Brian Siegelwax here. All other entrants, please feel free to post your stories and to submit them to other literary contests. Drop me a line, and leave a link in the chat below, when your story is published. I’d love to hear how your journey continues.

Also, stay tuned for v2.0 of the Quantum-Steampunk Short-Story Contest. An organization has expressed interest in a reboot during the 2024–2025 academic year. AI-collaboration category, anyone? Bonus points if you use a quantum neural network. Please email me if you’d like to support the effort!

Quantum-steampunk graphic by contest entrant Necklace Devkota

The opportunity to helm this contest has been a privilege and a dream. Many thanks to our writers, readers, funder (the John Templeton Foundation), staff (especially webmaster Anıl Zenginoğlu), judges, and shortlisting committee. Keep writing, and keep experimenting.

Quantum computing vs. Grubhub

pon receiving my speaking assignments for the Tucson Festival of Books, I mentally raised my eyebrows. I’d be participating in a panel discussion with Mike Evans, the founder of Grubhub? But I hadn’t created an app that’s a household name. I hadn’t transformed 30 million people’s eating habits. I’m a theoretical physicist; I build universes in my head for a living. I could spend all day trying to prove a theorem and failing, and no stocks would tumble as a result.

Once the wave of incredulity had crested, I noticed that the panel was entitled “The Future of Tech.” Grubhub has transformed technology, I reasoned, and quantum computing is in the process of doing so. Fair enough. 

Besides, my husband pointed out, the food industry requires fridges. Physicists building quantum computers from superconductors need fridges. The latter fridges require temperatures ten million times lower than restaurateurs do, but we still share an interest.

Very well, I thought. Game on.

Tucson hosts the third-largest book festival in the United States. And why shouldn’t it, as the festival takes place in early March, when much of the country is shivering and eyeing Arizona’s T-shirt temperatures with envy? If I had to visit any institution in the winter, I couldn’t object to the festival’s home, the University of Arizona.

The day before the festival, I presented a colloquium at the university, for the Arizona Quantum Alliance. The talk took place in the Wyant College of Optical Sciences, the home of an optical-instruments museum. Many of the instruments date to the 1800s and, built from brass and wood, smack of steampunk. I approved. Outside the optics building, workers were setting up tents to house the festival’s science activities.

The next day—a Saturday—dawned clear and bright. Late in the morning, I met Mike and our panel’s moderator, Bob Griffin, another startup veteran. We sat down at a table in the back of a broad tent, the tent filled up with listeners, and the conversation began.

I relished the conversation as I’d relished an early-morning ramble along the trails by my hotel at the base of the Santa Catalina Mountains. I joined theoretical physics for the love of ideas, and this exchange of ideas offered an intellectual workout. One of Mike’s points resonated with me most: Grubhub didn’t advance technology much. He shifted consumers from ordering pizza via phone call to ordering pizza via computer, then to ordering pizza via apps on phones. Yet these small changes, accumulated across a population and encouraged by a pandemic, changed society. Food-delivery services exploded and helped establish the gig economy (despite Mike’s concerns about worker security). One small step for technology, adopted by tens of millions, can constitute one giant leap for commerce.

To me, Grubhub offered a foil for quantum computing, which offers a giant leap in technology: The physical laws best-suited to describing today’s computers can’t describe quantum computers. Some sources portray this advance as bound to transform all our lives in countless ways. This portrayal strikes some quantum scientists as hype that can endanger quality work. 

Quantum computers will transform cybersecurity, being able to break the safeguards that secure our credit-card information when we order food via Grubhub. Yet most consumers don’t know what safeguards are protecting us. We simply trust that safeguards exist. How they look under the hood will change by the time large-scale quantum computers exist—will metamorphose perhaps as dramatically as did Gregor Samsa before he woke up as an insect. But consumers’ lives might not metamorphose.

Quantum scientists hope and anticipate that quantum computers will enable discoveries in chemistry, materials science, and pharmacology. Molecules are quantum, and many materials exhibit quantum properties. Simulating quantum systems takes classical (everyday) computers copious amounts of time and memory—in some cases, so much that a classical computer the size of the universe would take ages. Quantum computers will be able to simulate quantum subjects naturally. But how these simulations will impact everyday life remains a question.

For example, consider my favorite potential application of quantum computers: fertilizer production, as envisioned by Microsoft’s quantum team. Humanity spends about 3% of the world’s energy on producing fertilizer, using a technique developed in 1909. Bacteria accomplish the same goal far more efficiently. But those bacteria use a molecule—nitrogenase—too complicated for us to understand using classical computers. Being quantum, the molecule invites quantum computation. Quantum computers may crack the molecule’s secrets and transform fertilizer production and energy use. The planet and humanity would benefit. We might reduce famines or avert human-driven natural disasters. But would the quantum computation change my neighbor’s behavior as Grubhub has? I can’t say.

Finally, evidence suggests that quantum computers can assist with optimization problems. Imagine a company that needs to transport supplies to various places at various times. How can the company optimize this process—implement it most efficiently? Quantum computers seem likely to be able to help. The evidence isn’t watertight, however, and quantum computers might not solve optimization problems exactly. If the evidence winds up correct, industries will benefit. But would this advance change Jane Doe’s everyday habits? Or will she only receive pizza deliveries a few minutes more quickly?

Don’t get me wrong; quantum technology has transformed our lives. It’s enabled the most accurate, most precise clocks in the world, which form the infrastructure behind GPS. Quantum physics has awed us, enabling the detection of gravitational waves—ripples, predicted by Einstein, in spacetime. But large-scale quantum computers—the holy grail of quantum technology—don’t suit all problems, such as totting up the miles I traveled en route to Tucson; and consumers might not notice quantum computers’ transformation of cybersecurity. I expect quantum computing to change the world, but let’s think twice about whether quantum computing will change everyone’s life like a blockbuster app.

I’ve no idea how many people have made this pun about Mike’s work, but the panel discussion left me with food for thought. He earned his undergraduate degree at MIT, by the way; so scientifically inclined Quantum Frontiers readers might enjoy his memoir, Hangry. It conveys a strong voice and dishes on data and diligence through stories. (For the best predictor of whether you’ll enjoy a burrito, ignore the starred reviews. Check how many people have reordered the burrito.)

The festival made my week. After the panel, I signed books; participated in a discussion about why “The Future Is Quantum!” with law professor Jane Bambauer; and narrowly missed a talk by Lois Lowry, a Newbury Award winner who wrote novels that I read as a child. (The auditorium filled up before I reached the door, but I’m glad that it did; Lois Lowry deserves a packed house and then some.) I learned—as I’d wondered—that yes, there’s something magical to being an author at a book festival. And I learned about how the future of tech depends on more than tech.

Memories of things past

My best friend—who’s held the title of best friend since kindergarten—calls me the keeper of her childhood memories. I recall which toys we played with, the first time I visited her house,1 and which beverages our classmates drank during snack time in kindergarten.2 She wouldn’t be surprised to learn that the first workshop I’ve co-organized centered on memory.

Memory—and the loss of memory—stars in thermodynamics. As an example, take what my husband will probably do this evening: bake tomorrow’s breakfast. I don’t know whether he’ll bake fruit-and-oat cookies, banana muffins, pear muffins, or pumpkin muffins. Whichever he chooses, his baking will create a scent. That scent will waft across the apartment, seep into air vents, and escape into the corridor—will disperse into the environment. By tomorrow evening, nobody will be able to tell by sniffing what my husband will have baked. 

That is, the kitchen’s environment lacks a memory. This lack contributes to our experience of time’s arrow: We sense that time passes partially by smelling less and less of breakfast. Physicists call memoryless systems and processes Markovian.

Our kitchen’s environment is Markovian because it’s large and particles churn through it randomly. But not all environments share these characteristics. Metaphorically speaking, a dispersed memory of breakfast may recollect, return to a kitchen, and influence the following week’s baking. For instance, imagine an atom in a quantum computer, rather than a kitchen in an apartment. A few other atoms may form our atom’s environment. Quantum information may leak from our atom into that environment, swish around in the environment for a time, and then return to haunt our atom. We’d call the atom’s evolution and environment non-Markovian.

I had the good fortune to co-organize a workshop about non-Markovianity—about memory—this February. The workshop took place at the Banff International Research Station, abbreviated BIRS, which you pronounce like the plural of what you say when shivering outdoors in Canada. BIRS operates in the Banff Centre for Arts and Creativity, high in the Rocky Mountains. The Banff Centre could accompany a dictionary entry for pristine, to my mind. The air feels crisp, the trees on nearby peaks stand out against the snow like evergreen fringes on white velvet, and the buildings balance a rustic-mountain-lodge style with the avant-garde. 

The workshop balanced styles, too, but skewed toward the theoretical and abstract. We learned about why the world behaves classically in our everyday experiences; about information-theoretic measures of the distances between quantum states; and how to simulate, on quantum computers, chemical systems that interact with environments. One talk, though, brought our theory back down to (the snow-dusted) Earth.

Gabriela Schlau-Cohen runs a chemistry lab at MIT. She wants to understand how plants transport energy. Energy arrives at a plant from the sun in the form of light. The light hits a pigment-and-protein complex. If the plant is lucky, the light transforms into a particle-like packet of energy called an exciton. The exciton traverses the receptor complex, then other complexes. Eventually, the exciton finds a spot where it can enable processes such as leaf growth. 

A high fraction of the impinging photons—85%—transform into excitons. How do plants convert and transport energy as efficiently as they do?

Gabriela’s group aims to find out—not by testing natural light-harvesting complexes, but by building complexes themselves. The experimentalists mimic the complex’s protein using DNA. You can fold DNA into almost any shape you want, by choosing the DNA’s base pairs (basic units) adroitly and by using “staples” formed from more DNA scraps. The sculpted molecules are called DNA origami.

Gabriela’s group engineers different DNA structures, analogous to complexes’ proteins, to have different properties. For instance, the experimentalists engineer rigid structures and flexible structures. Then, the group assesses how energy moves through each structure. Each structure forms an environment that influences excitons’ behaviors, similarly to how a memory-containing environment influences an atom.

Courtesy of Gabriela Schlau-Cohen

The Banff environment influenced me, stirring up memories like powder displaced by a skier on the slopes above us. I first participated in a BIRS workshop as a PhD student, and then I returned as a postdoc. Now, I was co-organizing a workshop to which I brought a PhD student of my own. Time flows, as we’re reminded while walking down the mountain from the Banff Centre into town: A cemetery borders part of the path. Time flows, but we belong to that thermodynamically remarkable class of systems that retain memories…memories and a few other treasures that resist change, such as friendships held since kindergarten.

1Plushy versions of Simba and Nala from The Lion King. I remain grateful to her for letting me play at being Nala.

2I’d request milk, another kid would request apple juice, and everyone else would request orange juice.

A (quantum) complex legacy: Part deux

I didn’t fancy the research suggestion emailed by my PhD advisor.

A 2016 email from John Preskill led to my publishing a paper about quantum complexity in 2022, as I explained in last month’s blog post. But I didn’t explain what I thought of his email upon receiving it.

It didn’t float my boat. (Hence my not publishing on it until 2022.)

The suggestion contained ingredients that ordinarily would have caulked any cruise ship of mine: thermodynamics, black-hole-inspired quantum information, and the concept of resources. John had forwarded a paper drafted by Stanford physicists Adam Brown and Lenny Susskind. They act as grand dukes of the community sussing out what happens to information swallowed by black holes. 

From Rare-Gallery

We’re not sure how black holes work. However, physicists often model a black hole with a clump of particles squeezed close together and so forced to interact with each other strongly. The interactions entangle the particles. The clump’s quantum state—let’s call it | \psi(t) \rangle—grows not only complicated with time (t), but also complex in a technical sense: Imagine taking a fresh clump of particles and preparing it in the state | \psi(t) \rangle via a sequence of basic operations, such as quantum gates performable with a quantum computer. The number of basic operations needed is called the complexity of | \psi(t) \rangle. A black hole’s state has a complexity believed to grow in time—and grow and grow and grow—until plateauing. 

This growth echoes the second law of thermodynamics, which helps us understand why time flows in only one direction. According to the second law, every closed, isolated system’s entropy grows until plateauing.1 Adam and Lenny drew parallels between the second law and complexity’s growth.

The less complex a quantum state is, the better it can serve as a resource in quantum computations. Recall, as we did last month, performing calculations in math class. You needed clean scratch paper on which to write the calculations. So does a quantum computer. “Scratch paper,” to a quantum computer, consists of qubits—basic units of quantum information, realized in, for example, atoms or ions. The scratch paper is “clean” if the qubits are in a simple, unentangled quantum state—a low-complexity state. A state’s greatest possible complexity, minus the actual complexity, we can call the state’s uncomplexity. Uncomplexity—a quantum state’s blankness—serves as a resource in quantum computation.

Manny Knill and Ray Laflamme realized this point in 1998, while quantifying the “power of one clean qubit.” Lenny arrived at a similar conclusion while reasoning about black holes and firewalls. For an introduction to firewalls, see this blog post by John. Suppose that someone—let’s call her Audrey—falls into a black hole. If it contains a firewall, she’ll burn up. But suppose that someone tosses a qubit into the black hole before Audrey falls. The qubit kicks the firewall farther away from the event horizon, so Audrey will remain safe for longer. Also, the qubit increases the uncomplexity of the black hole’s quantum state. Uncomplexity serves as a resource also to Audrey.

A resource is something that’s scarce, valuable, and useful for accomplishing tasks. Different things qualify as resources in different settings. For instance, imagine wanting to communicate quantum information to a friend securely. Entanglement will serve as a resource. How can we quantify and manipulate entanglement? How much entanglement do we need to perform a given communicational or computational task? Quantum scientists answer such questions with a resource theory, a simple information-theoretic model. Theorists have defined resource theories for entanglement, randomness, and more. In many a blog post, I’ve eulogized resource theories for thermodynamic settings. Can anyone define, Adam and Lenny asked, a resource theory for quantum uncomplexity?

Resource thinking pervades our world.

By late 2016, I was a quantum thermodynamicist, I was a resource theorist, and I’d just debuted my first black-hole–inspired quantum information theory. Moreover, I’d coauthored a review about the already-extant resource theory that looked closest to what Adam and Lenny sought. Hence John’s email, I expect. Yet that debut had uncovered reams of questions—questions that, as a budding physicist heady with the discovery of discovery, I could own. Why would I answer a question of someone else’s instead?

So I thanked John, read the paper draft, and pondered it for a few days. Then, I built a research program around my questions and waited for someone else to answer Adam and Lenny.

Three and a half years later, I was still waiting. The notion of uncomplexity as a resource had enchanted the black-hole-information community, so I was preparing a resource-theory talk for a quantum-complexity workshop. The preparations set wheels churning in my mind, and inspiration struck during a long walk.2

After watching my workshop talk, Philippe Faist reached out about collaborating. Philippe is a coauthor, a friend, and a fellow quantum thermodynamicist and resource theorist. Caltech’s influence had sucked him, too, into the black-hole community. We Zoomed throughout the pandemic’s first spring, widening our circle to include Teja Kothakonda, Jonas Haferkamp, and Jens Eisert of Freie University Berlin. Then, Anthony Munson joined from my nascent group in Maryland. Physical Review A published our paper, “Resource theory of quantum uncomplexity,” in January.

The next four paragraphs, I’ve geared toward experts. An agent in the resource theory manipulates a set of n qubits. The agent can attempt to perform any gate U on any two qubits. Noise corrupts every real-world gate implementation, though. Hence the agent effects a gate chosen randomly from near U. Such fuzzy gates are free. The agent can’t append or discard any system for free: Appending even a maximally mixed qubit increases the state’s uncomplexity, as Knill and Laflamme showed. 

Fuzzy gates’ randomness prevents the agent from mapping complex states to uncomplex states for free (with any considerable probability). Complexity only grows or remains constant under fuzzy operations, under appropriate conditions. This growth echoes the second law of thermodynamics. 

We also defined operational tasks—uncomplexity extraction and expenditure analogous to work extraction and expenditure. Then, we bounded the efficiencies with which the agent can perform these tasks. The efficiencies depend on a complexity entropy that we defined—and that’ll star in part trois of this blog-post series.

Now, I want to know what purposes the resource theory of uncomplexity can serve. Can we recast black-hole problems in terms of the resource theory, then leverage resource-theory results to solve the black-hole problem? What about problems in condensed matter? Can our resource theory, which quantifies the difficulty of preparing quantum states, merge with the resource theory of magic, which quantifies that difficulty differently?

Unofficial mascot for fuzzy operations

I don’t regret having declined my PhD advisor’s recommendation six years ago. Doing so led me to explore probability theory and measurement theory, collaborate with two experimental labs, and write ten papers with 21 coauthors whom I esteem. But I take my hat off to Adam and Lenny for their question. And I remain grateful to the advisor who kept my goals and interests in mind while checking his email. I hope to serve Anthony and his fellow advisees as well.

1…en route to obtaining a marriage license. My husband and I married four months after the pandemic throttled government activities. Hours before the relevant office’s calendar filled up, I scored an appointment to obtain our license. Regarding the metro as off-limits, my then-fiancé and I walked from Cambridge, Massachusetts to downtown Boston for our appointment. I thank him for enduring my requests to stop so that I could write notes.

2At least, in the thermodynamic limit—if the system is infinitely large. If the system is finite-size, its entropy grows on average.

A (quantum) complex legacy

Early in the fourth year of my PhD, I received a most John-ish email from John Preskill, my PhD advisor. The title read, “thermodynamics of complexity,” and the message was concise the way that the Amazon River is damp: “Might be an interesting subject for you.” 

Below the signature, I found a paper draft by Stanford physicists Adam Brown and Lenny Susskind. Adam is a Brit with an accent and a wit to match his Oxford degree. Lenny, known to the public for his books and lectures, is a New Yorker with an accent that reminds me of my grandfather. Before the physicists posted their paper online, Lenny sought feedback from John, who forwarded me the email.

The paper concerned a confluence of ideas that you’ve probably encountered in the media: string theory, black holes, and quantum information. String theory offers hope for unifying two physical theories: relativity, which describes large systems such as our universe, and quantum theory, which describes small systems such as atoms. A certain type of gravitational system and a certain type of quantum system participate in a duality, or equivalence, known since the 1990s. Our universe isn’t such a gravitational system, but never mind; the duality may still offer a toehold on a theory of quantum gravity. Properties of the gravitational system parallel properties of the quantum system and vice versa. Or so it seemed.

The gravitational system can have two black holes linked by a wormhole. The wormhole’s volume can grow linearly in time for a time exponentially long in the black holes’ entropy. Afterward, the volume hits a ceiling and approximately ceases changing. Which property of the quantum system does the wormhole’s volume parallel?

Envision the quantum system as many particles wedged close together, so that they interact with each other strongly. Initially uncorrelated particles will entangle with each other quickly. A quantum system has properties, such as average particle density, that experimentalists can measure relatively easily. Does such a measurable property—an observable of a small patch of the system—parallel the wormhole volume? No; such observables cease changing much sooner than the wormhole volume does. The same conclusion applies to the entanglement amongst the particles.

What about a more sophisticated property of the particles’ quantum state? Researchers proposed that the state’s complexity parallels the wormhole’s volume. To grasp complexity, imagine a quantum computer performing a computation. When performing computations in math class, you needed blank scratch paper on which to write your calculations. A quantum computer needs the quantum equivalent of blank scratch paper: qubits (basic units of quantum information, realized, for example, as atoms) in a simple, unentangled, “clean” state. The computer performs a sequence of basic operations—quantum logic gates—on the qubits. These operations resemble addition and subtraction but can entangle the qubits. What’s the minimal number of basic operations needed to prepare a desired quantum state (or to “uncompute” a given state to the blank state)? The state’s quantum complexity.1 

Quantum complexity has loomed large over multiple fields of physics recently: quantum computing, condensed matter, and quantum gravity. The latter, we established, entails a duality between a gravitational system and a quantum system. The quantum system begins in a simple quantum state that grows complicated as the particles interact. The state’s complexity parallels the volume of a wormhole in the gravitational system, according to a conjecture.2 

The conjecture would hold more water if the quantum state’s complexity grew similarly to the wormhole’s volume: linearly in time, for a time exponentially large in the quantum system’s size. Does the complexity grow so? The expectation that it does became the linear-growth conjecture.

Evidence supported the conjecture. For instance, quantum information theorists modeled the quantum particles as interacting randomly, as though undergoing a quantum circuit filled with random quantum gates. Leveraging probability theory,3 the researchers proved that the state’s complexity grows linearly at short times. Also, the complexity grows linearly for long times if each particle can store a great deal of quantum information. But what if the particles are qubits, the smallest and most ubiquitous unit of quantum information? The question lingered for years.

Jonas Haferkamp, a PhD student in Berlin, dreamed up an answer to an important version of the question.4 I had the good fortune to help formalize that answer with him and members of his research group: master’s student Teja Kothakonda, postdoc Philippe Faist, and supervisor Jens Eisert. Our paper, published in Nature Physics last year, marked step one in a research adventure catalyzed by John Preskill’s email 4.5 years earlier.

Imagine, again, qubits undergoing a circuit filled with random quantum gates. That circuit has some architecture, or arrangement of gates. Slotting different gates into the architecture effects different transformations5 on the qubits. Consider the set of all transformations implementable with one architecture. This set has some size, which we defined and analyzed.

What happens to the set’s size if you add more gates to the circuit—let the particles interact for longer? We can bound the size’s growth using the mathematical toolkits of algebraic geometry and differential topology. Upon bounding the size’s growth, we can bound the state’s complexity. The complexity, we concluded, grows linearly in time for a time exponentially long in the number of qubits.

Our result lends weight to the complexity-equals-volume hypothesis. The result also introduces algebraic geometry and differential topology into complexity as helpful mathematical toolkits. Finally, the set size that we bounded emerged as a useful concept that may elucidate circuit analyses and machine learning.

John didn’t have machine learning in mind when forwarding me an email in 2017. He didn’t even have in mind proving the linear-growth conjecture. The proof enables step two of the research adventure catalyzed by that email: thermodynamics of quantum complexity, as the email’s title stated. I’ll cover that thermodynamics in its own blog post. The simplest of messages can spin a complex legacy.

The links provided above scarcely scratch the surface of the quantum-complexity literature; for a more complete list, see our paper’s bibliography. For a seminar about the linear-growth paper, see this video hosted by Nima Lashkari’s research group.

1The term complexity has multiple meanings; forget the rest for the purposes of this article.

2According to another conjecture, the quantum state’s complexity parallels a certain space-time region’s action. (An action, in physics, isn’t a motion or a deed or something that Hamlet keeps avoiding. An action is a mathematical object that determines how a system can and can’t change in time.) The first two conjectures snowballed into a paper entitled “Does complexity equal anything?” Whatever it parallels, complexity plays an important role in the gravitational–quantum duality. 

3Experts: Such as unitary t-designs.

4Experts: Our work concerns quantum circuits, rather than evolutions under fixed Hamiltonians. Also, our work concerns exact circuit complexity, the minimal number of gates needed to prepare a state exactly. A natural but tricky extension eluded us: approximate circuit complexity, the minimal number of gates needed to approximate the state.

5Experts: Unitary operators.

Eight highlights from publishing a science book for the general public

What’s it like to publish a book?

I’ve faced the question again and again this year, as my book Quantum Steampunk hit bookshelves in April. Two responses suggest themselves.

On the one hand, I channel the Beatles: It’s a hard day’s night. Throughout the publication process, I undertook physics research full-time. Media opportunities squeezed themselves into the corners of the week: podcast and radio-show recordings, public-lecture preparations, and interviews with journalists. After submitting physics papers to coauthors and journals, I drafted articles for Quanta Magazine, Literary Hub, the New Scientist newsletter, and other venues—then edited the articles, then edited them again, and then edited them again. Often, I apologized to editors about not having the freedom to respond to their comments till the weekend. Before public-lecture season hit, I catalogued all the questions that I imagined anyone might ask, and I drafted answers. The resulting document spans 16 pages, and I study it before every public lecture and interview.

Public lecture at the Institute for the Science of Origins at Case Western Reserve University

Answer number two: Publishing a book is like a cocktail of watching the sun rise over the Pacific from Mt. Fuji, taking off in an airplane for the first time, and conducting a symphony in Carnegie Hall.1 I can scarcely believe that I spoke in the Talks at Google lecture series—a series that’s hosted Tina Fey, Noam Chomsky, and Andy Weir! And I found my book mentioned in the Boston Globe! And in a Dutch science publication! If I were an automaton from a steampunk novel, the publication process would have wound me up for months.

Publishing a book has furnished my curiosity cabinet of memories with many a seashell, mineral, fossil, and stuffed crocodile. Since you’ve asked, I’ll share eight additions that stand out.

Breakfast on publication day. Because how else would one celebrate the publication of a steampunk book?

1) I guest-starred on a standup-comedy podcast. Upon moving into college, I received a poster entitled 101 Things to Do Before You Graduate from Dartmouth. My list of 101 Things I Never Expected to Do in a Physics Career include standup comedy.2 I stand corrected.

Comedian Anthony Jeannot bills his podcast Highbrow Drivel as consisting of “hilarious conversations with serious experts.” I joined him and guest comedienne Isabelle Farah in a discussion about film studies, lunch containers, and hippies, as well as quantum physics. Anthony expected me to act as the straight man, to my relief. That said, after my explanation of how quantum computers might help us improve fertilizer production and reduce global energy consumption, Anthony commented that, if I’d been holding a mic, I should have dropped it. I cherish the memory despite having had to look up the term mic drop when the recording ended.

At Words Worth Books in Waterloo, Canada

2) I met Queen Victoria. In mid-May, I arrived in Canada to present about my science and my book at the University of Toronto. En route to the physics department, I stumbled across the Legislative Assembly of Ontario. Her Majesty was enthroned in front of the intricate sandstone building constructed during her reign. She didn’t acknowledge me, of course. But I hope she would have approved of the public lecture I presented about physics that blossomed during her era. 

Her Majesty, Queen Victoria

3) You sent me your photos of Quantum Steampunk. They arrived through email, Facebook, Twitter, text, and LinkedIn. They showed you reading the book, your pets nosing it, steampunk artwork that you’d collected, and your desktops and kitchen counters. The photographs have tickled and surprised me, although I should have expected them, upon reflection: Quantum systems submit easily to observation by their surroundings.3 Furthermore, people say that art—under which I classify writing—fosters human connection. Little wonder, then, that quantum physics and writing intersect in shared book selfies.

Photos from readers

4) A great-grandson of Ludwig Boltzmann’s emailed. Boltzmann, a 19th-century Austrian physicist, helped mold thermodynamics and its partner discipline statistical mechanics. So I sat up straighter upon opening an email from a physicist descended from the giant. Said descendant turned out to have watched a webinar I’d presented for the magazine Physics Today. Although time machines remain in the domain of steampunk fiction, they felt closer to reality that day.

5) An experiment bore out a research goal inspired by the book. My editors and I entitled the book’s epilogue Where to next? The future of quantum steampunk. The epilogue spurred me to brainstorm about opportunities and desiderata—literally, things desired. Where did I want for quantum thermodynamics to head? I shared my brainstorming with an experimentalist later that year. We hatched a project, whose experiment concluded this month. I’ll leave the story for after the paper debuts, but I can say for now that the project gives me chills—in a good way.

6) I recited part of Edgar Allan Poe’s “The Raven” with a fellow physicist at a public lecture. The Harvard Science Book Talks form a lecture series produced by the eponymous university and bookstore. I presented a talk hosted by Jacob Barandes—a Harvard physics lecturer, the secret sauce behind the department’s graduate program, and an all-around exemplar of erudition. He asked how entropy relates to “The Raven.”

Image from the Harvard Gazette

For the full answer, see chapter 11 of my book. Briefly: Many entropies exist. They quantify the best efficiencies with which we can perform thermodynamic tasks such as running an engine. Different entropies can quantify different tasks’ efficiencies if the systems are quantum, otherwise small, or far from equilibrium—outside the purview of conventional 19th-century thermodynamics. Conventional thermodynamics describes many-particle systems, such as factory-scale steam engines. We can quantify conventional systems’ efficiencies using just one entropy: the thermodynamic entropy that you’ve probably encountered in connection with time’s arrow. How does this conventional entropy relate to the many quantum entropies? Imagine starting with a quantum system, then duplicating it again and again, until accruing infinitely many copies. The copies’ quantum entropies converge (loosely speaking), collapsing onto one conventional-looking entropy. The book likens this collapse to a collapse described in “The Raven”:

The speaker is a young man who’s startled, late one night, by a tapping sound. The tapping exacerbates his nerves, which are on edge due to the death of his love: “Deep into that darkness peering, long I stood there wondering, fearing, / Doubting, dreaming dreams no mortal ever dared to dream before.” The speaker realizes that the tapping comes from the window, whose shutter he throws open. His wonders, fears, doubts, and dreams collapse onto a bird’s form as a raven steps inside. So do the many entropies collapse onto one entropy as the system under consideration grows infinitely large. We could say, instead, that the entropies come to equal each other, but I’d rather picture “The Raven.” 

I’d memorized the poem in high school but never had an opportunity to recite it for anyone—and it’s a gem to declaim. So I couldn’t help reciting a few stanzas in response to Jacob. But he turned out to have memorized the poem, too, and responded with the next several lines! Even as a physicist, I rarely have the chance to reach such a pinnacle of nerdiness.

With Pittsburgh Quantum Institute head honchos Rob Cunningham and Adam Leibovich

7) I stumbled across a steam-driven train in Pittsburgh. Even before self-driving cars heightened the city’s futuristic vibe, Pittsburgh has been as steampunk as the Nautilus. Captains of industry (or robber barons, if you prefer) raised the city on steel that fed the Industrial Revolution.4 And no steampunk city would deserve the title without a Victorian botanical garden.

A Victorian botanical garden features in chapter 5 of my book. To see a real-life counterpart, visit the Phipps Conservatory. A poem in glass and aluminum, the Phipps opened in 1893 and even boasts a Victoria Room.

Yes, really.

I sneaked into the Phipps during the Pittsburgh Quantum Institute’s annual conference, where I was to present a public lecture about quantum steampunk. Upon reaching the sunken garden, I stopped in my tracks. Yards away stood a coal-black, 19th-century steam train. 

At least, an imitation train stood yards away. The conservatory had incorporated Monet paintings into its scenery during a temporary exhibition. Amongst the palms and ponds were arranged props inspired by the paintings. Monet painted The Gare Saint-Lazare: Arrival of a Train near a station, so a miniature train stood behind a copy of the artwork. The scene found its way into my public lecture—justifying my playing hooky from the conference for a couple of hours (I was doing research for my talk!).

My book’s botanical garden houses hummingbirds, wildebeests, and an artificial creature called a Yorkicockasheepapoo. I can’t promise that you’ll spy Yorkicockasheepapoos while wandering the Phipps, but send me a photo if you do.

8) My students and postdocs presented me with a copy of Quantum Steampunk that they’d signed. They surprised me one afternoon, shortly after publication day, as I was leaving my office. The gesture ranks as one of the most adorable things that’ve ever happened to me, and their book is now the copy that I keep on campus. 

Students…book-selfie photographers…readers halfway across the globe who drop a line…People have populated my curiosity cabinet of with some of the most extraordinary book-publication memories. Thanks for reading, and thanks for sharing.

Book signing after public lecture at Chapman University. Photo from Justin Dressel.

1Or so I imagine, never having watched the sun rise from Mt. Fuji or conducted any symphony, let alone one at Carnegie Hall, and having taken off in a plane for the first time while two months old.

2Other items include serve as an extra in a film, become stranded in Taiwan, and publish a PhD thesis whose title contains the word “steampunk.”

3This ease underlies the difficulty of quantum computing: Any stray particle near a quantum computer can “observe” the computer—interact with the computer and carry off a little of the information that the computer is supposed to store.

4The Pittsburgh Quantum Institute includes Carnegie Mellon University, which owes its name partially to captain of industry Andrew Carnegie.

Announcing the quantum-steampunk short-story contest!

The year I started studying calculus, I took the helm of my high school’s literary magazine. Throughout the next two years, the editorial board flooded campus with poetry—and poetry contests. We papered the halls with flyers, built displays in the library, celebrated National Poetry Month, and jerked students awake at morning assembly (hitherto known as the quiet kid you’d consult if you didn’t understand the homework, I turned out to have a sense of humor and a stage presence suited to quoting from that venerated poet Dr. Seuss.1 Who’d’ve thought?). A record number of contest entries resulted.

That limb of my life atrophied in college. My college—a stereotypical liberal-arts affair complete with red bricks—boasted a literary magazine. But it also boasted English and comparative-literature majors. They didn’t need me, I reasoned. The sun ought to set on my days of engineering creative-writing contests.

I’m delighted to be eating my words, in announcing the Quantum-Steampunk Short-Story Contest.

From Pinterest

The Maryland Quantum-Thermodynamics Hub is running the contest this academic year. I’ve argued that quantum thermodynamics—my field of research—resembles the literary and artistic genre of steampunk. Steampunk stories combine Victorian settings and sensibilities with futuristic technologies, such as dirigibles and automata. Quantum technologies are cutting-edge and futuristic, whereas thermodynamics—the study of energy—developed during the 1800s. Inspired by the first steam engines, thermodynamics needs retooling for quantum settings. That retooling is quantum thermodynamics—or, if you’re feeling whimsical (as every physicist should), quantum steampunk.

The contest opens this October and closes on January 15, 2023. Everyone aged 13 or over may enter a story, written in English, of up to 3,000 words. Minimal knowledge of quantum theory is required; if you’ve heard of Schrödinger’s cat, superpositions, or quantum uncertainty, you can pull out your typewriter and start punching away. 

Entries must satisfy two requirements: First, stories must be written in a steampunk style, including by taking place at least partially during the 1800s. Transport us to Meiji Japan; La Belle Époque in Paris; gritty, smoky Manchester; or a camp of immigrants unfurling a railroad across the American west. Feel free to set your story partially in the future; time machines are welcome.

Second, each entry must feature at least one quantum technology, real or imagined. Real and under-construction quantum technologies include quantum computers, communication networks, cryptographic systems, sensors, thermometers, and clocks. Experimentalists have realized quantum engines, batteries, refrigerators, and teleportation, too. Surprise us with your imagined quantum technologies (and inspire our next research-grant proposals).

In an upgrade from my high-school days, we’ll be awarding $4,500 worth of Visa gift certificates. The grand prize entails $1,500. Entries can also win in categories to be finalized during the judging process; I anticipate labels such as Quantum Technology We’d Most Like to Have, Most Badass Steampunk Hero/ine, Best Student Submission, and People’s Choice Award.

Our judges run the gamut from writers to quantum physicists. Judge Ken Liu‘s latest novel peered out from a window of my local bookstore last month. He’s won Hugo, Nebula, and World Fantasy Awards—the topmost three prizes that pop up if you google “science-fiction awards.” Appropriately for a quantum-steampunk contest, Ken has pioneered the genre of silkpunk, “a technology aesthetic based on a science fictional elaboration of traditions of engineering in East Asia’s classical antiquity.” 

Emily Brandchaft Mitchell is an Associate Professor of English at the University of Maryland. She’s authored a novel and published short stories in numerous venues. Louisa Gilder wrote one of the New York Times 100 Notable Books of 2009, The Age of Entanglement. In it, she imagines conversations through which scientists came to understand the core of this year’s Nobel Prize in physics. Jeffrey Bub is a philosopher of physics and a Distinguished University Professor Emeritus at the University of Maryland. He’s also published graphic novels about special relativity and quantum physics with his artist daughter. 

Patrick Warfield, a musicologist, serves as the Associate Dean for Arts and Programming at the University of Maryland. (“Programming” as in “activities,” rather than as in “writing code,” the meaning I encounter more often.) Spiros Michalakis is a quantum mathematician and the director of Caltech’s quantum outreach program. You may know him as a scientific consultant for Marvel Comics films.

Walter E. Lawrence III is a theoretical quantum physicist and a Professor Emeritus at Dartmouth College. As department chair, he helped me carve out a niche for myself in physics as an undergrad. Jack Harris, an experimental quantum physicist, holds a professorship at Yale. His office there contains artwork that features dragons.

University of Maryland undergraduate Hannah Kim designed the ad above. She and Jade LeSchack, founder of the university’s Undergraduate Quantum Association, round out the contest’s leadership team. We’re standing by for your submissions through—until the quantum internet exists—the hub’s website. Send us something to dream on.

This contest was made possible through the support of Grant 62422 from the John Templeton Foundation.

1Come to think of it, Seuss helped me prepare for a career in physics. He coined the terms wumbus and nerd; my PhD advisor invented NISQ, the name for a category of quantum devices. NISQ now has its own Wikipedia page, as does nerd